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Abstract. Polysomnograhy is the standard method for objectively mea-
suring sleep, both in patient diagnostics in the sleep laboratory and in
clinical research. However, the correspondence between this objective
measurement and a person’s subjective assessment of the sleep quality is
surprisingly small, if existent. Considering standard sleep characteristics
based on the Rechtschaffen and Kales sleep models and the Self-rating
Sleep and Awakening Quality scale (SSA), the observed correlations are
at most 0.35. An alternative way of sleep modelling - the probabilistic
sleep model (PSM) characterises sleep with probability values of standard
sleep stages Wake, S1, S2, slow wave sleep (SWS) and REM operating
on three second long time segments. We designed sleep features based
on the PSM which correspond to the standard sleep characteristics or
reflect the dynamical behaviour of probabilistic sleep curves. The main
goal of this work is to show whether the continuous sleep representation
includes more information about the subjectively experienced quality of
sleep than the traditional hypnogram. Using a linear combination of sleep
features an improvement in correlation with the subjective sleep quality
scores was observed in comparison to the case when a single sleep feature
was considered.

Keywords: Probabilistic sleep model · Hypnogram · Self–rating Sleep
and Awakening Quality scale · Sleep features

1 Introduction

Polysomnography (PSG) is the standard method for objectively measuring sleep,
both in patient diagnostics in the sleep laboratory and in clinical research.
Besides revealing important events pointing towards sleep disorders, such an
objective biomarker can also be expected to reflect the quality of sleep in
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terms of how rested the subject feels in the morning. Yet, if one looks at the
correspondence between this objective measurement and a person’s subjective
assessment of one’s sleep quality then it is found to be surprisingly small, if exis-
tent. In [1] the authors cluster patients by values of the Pittsburgh Sleep Quality
Index (PSQI) and the Epworth Sleepiness Scale (ESS), both subjective measures
of long-term (typically a month) sleep and daytime wakefulness qualities. They
found no significant differences in any PSG sleep variable between those clusters,
indicating that those subjective variables measure something distinct from the
objective sleep recording.

In [2] the authors perform a multi–variable regression predicting different
psychomotor performance results from subjective and PSG–based sleep vari-
ables. The highest correlation was between a set of variables containing total
sleep time (TST), sleep efficiency (EFF), wake after sleep onset (WASO) and
sleep onset latency (SLAT), with R2 = 0.21 predicting the performance in a
simple reaction time test, but only within a group of normal sleepers.

Our own previous results [3,4] show that correlations between any PSG sleep
variable and subjective assessments on the same night (in particular Saletu’s Sub-
jective Sleep and Awakening Scale, or SSA, [5]) are poor, at best, with Pearson
or Spearman correlation coefficients hardly above 0.4. The same work, however,
showed that the novel probabilistic model of sleep, representing the microstruc-
ture of sleep as compared to standard hypnograms, can lead to variables with sig-
nificantly higher correlation coefficients, pointing to the fact that standard sleep
scoring does not extract the maximum information about sleep from the electro-
physiological signals, in particular, electroencephalography (EEG).

In this paper we investigate whether linear combinations of several variables
can achieve a higher correlation with subjective sleep quality than single vari-
ables. We do this for both probabilistic and traditional stage–based sleep profile
to also investigate whether in a multi–variable setting the former can also out-
perform the latter.

2 Data Set Description

In this study, the electroencephalographic (EEG) data from 540 polysomno-
graphic sleep recordings from the SIESTA database [6] were used. The 540 PSG
nights were recorded from 270 subjects in two consecutive nights spent in the
sleep laboratory.

The microstructure of each sleep recording was calculated by using the prob-
abilistic sleep model (PSM) introduced in [4]. In the PSM method three seconds
long time segments are used to calculate probability values to be in a certain
stage (Wake, S1, S2, slow wave sleep (SWS) and REM). Figure 1 shows an exam-
ple of the microstructure of sleep by depicting the probabilities for each sleep
stage over time. The standard Rechtschaffen and Kales scores1 obtained by the
automatic scoring system Somnolyser 24 × 7 [9] are plotted as well.
1 Nowadays, the American Academy of Sleep Medicine (AASM) sleep model is pre-

ferred in the clinical praxis, but we do not expect significant changes in results when
using the AASM scores instead of the Rechtschaffen and Kales sleep model.
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Fig. 1. An example of the microstructure of sleep for an all-night recording (blue) and
corresponding Rechtschaffen and Kales scores (red). (Color figure online)

After the subjects woke up, they were asked to fill in the Self–rating Sleep
And Awakening Quality (SSA) questionnaire [5]. The scale consist of 7, 8 and
5 questions on sleep quality, awakening quality and somatic complaints, leading
to a total score with a value between 20 (best quality) and 80 (worst quality).

3 Sleep Features

3.1 Hypnogram Features

A set of 25 standard sleep variables derived from a hypnogram were calculated
(Table 1). The descriptions and abbreviations of the features are given in the
second and third column of Table 1, respectively.

3.2 PSM Based Sleep Features

For a continuous probabilistic sleep profile X observed over a time interval T we
aimed to design variables that have a correspondence to the standard sleep mea-
sures and to include variables that optimally exploit potentially characteristics
found in the continuous profiles.

Band Power. The band power (BP) was computed by the following formula

BP |f2f1 =
∑

k

‖Fx(k)|f2f1‖2, (1)
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Table 1. The hypnogram features

Hypnogram feature Description Abbreviation

Time in bed (min) Time from lights out to the end of
the recording

TIB

Total sleep period
(min)

Time from the first to the last
epoch in any sleep stage

TSP

Total sleep time (min) Sum of epochs in one of the sleep
stages S1, S2, SWS, REM

TST

Wake within TSP
(min)

Sum of wake-epochs within the
total sleep period

WTSP

Wake after final
awakening (min)

Time from final awakening to the
end of the recording

WAFA

Lights out to S1 Time from lights out to the first
occurrence of stage 1

LS1

Lights out to S2 Time from lights out to the first
occurrence of stage 2

LS2

Sleep latency Time from lights out to the first
occurrence of three consecutive
epochs in stage S1 or to the first
occurrence of stage S2

SLAT

Sleep efficiency (%) TST
TIB

× 100 EFF

Stage (min) Time spent in a given sleep stage S1, S2, S3, S4,
SWS, REM

Stage (%) Time spent in a given sleep stage
TST

× 100 S1p, S2p, S3p,
S4p, SWSp, REMp

Frequency of awakening Number of awakenings within the
total sleep period

FW

Awakening-index Number of awakenings within the
total sleep period per hour sleep

FWTST

Frequency of stage
shifts

Number of stage shifts within the
total sleep period

FS

Stage shift-index Number of stage shifts within the
total sleep period per hour sleep

FSTST

where Fx(k)|f2f1 denotes the coefficients of the Fast Fourier Transform of x
between a lower cut-off frequency f1 = 0 and an upper cut-off frequency
f2 = 0.001.

Entropy. Entropy characterises the level of uncertainty of a signal. For each
microstructure of sleep stages it was computed as follows

ent = −
∫

T

X(t)∫
T
X(s)ds

log
X(t)∫

T
X(s)ds

dt, where log 0 = 0 by definition. (2)
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Log-Spaced Power Spectral Density. The power spectral density of the
microstructure of sleep EEG was estimated through the modified covariance
method. This method fits a pth order autoregressive (AR) model to a signal,
which is assumed to be the output of an AR system driven by white noise and
minimising the forward and backward prediction errors. The order of the AR
model was empirically selected as 13.

To characterise the output vector XPSD of the normalised estimate of the
AR system parameters with only one number we chose the common logarithm
of its mean value

psd = log10 XPSD. (3)

Moving Window Features. Two statistical features were extracted by using
a moving window through the probabilistic profile of sleep EEG. The moving
window has two kinds of parameters – a height h and a length l (the extension of
the window). Each of the non–overlapping windows of length l was represented
by the number of probability values which were higher than the height parameter.
This procedure results in a sequence MWS (moving window sequence) of length
L that resemble a smoothed version of the entire profile.

The moving window features were calculated as the arithmetic mean (Am)
and skewness (Sm) of MWS [2,3]

Am =
L∑

m=1

MWS(m)
L

= MWS, (4)

Sm =
1
L

∑L
m=1

(
MWS(m) − MWS

)3
(√

1
L

∑L
m=1

(
MWS(m) − MWS

)2
)3 . (5)

The optimal window parameters were set as l = 140 and h = 0.22.

Arithmetic Mean (AM), Geometric Mean (GM), Median (Med) were
considered as features of the discrete observation of a probabilistic profile X.

Area Under a Curve. In the case of PSM the area under a probabilistic sleep
profile X forms an analogy to the time spent in a given sleep stage

AUC(X) =
∫

T

X(t)dt. (6)

Moments of a Curve. The first moment mom1 of a curve X characterises the
expected value of the curve according to time [8]

mom1 =
∫

T

t
X(t)

AUC(X)
dt. (7)
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Higher order central moments

momk =
∫

T

(t − µ)k
X(t)

AUC(X)
dt, k = 2, 3, . . . . (8)

describe the variability in X. In this study only the second order central moment
mom2 was considered.

Moments of a Feature Function of a Curve. A feature function is a strictly
positive transformation of a curve which highlights a set of curves features [8],
for example

Imax(t) = c

(
X(t) − min

t∈T
X(t)

)r

, r ∈ R, (9)

which concentrates its weight to the local maxima of the curve X or

Im(t) = c|X(m)(t)| ,X(m) is the mth derivative of X, m = 1, 2, (10)

which highlights global characteristics. The constant c guarantees that the area
under a feature function is equal to 1. For all three feature functions the first
order moment mom1 was computed.

Curve Length. The curve length characterises changes of a curves profile over
a time interval T

cl =
∫

T

√
1 + (X ′(t))2dt. (11)

4 Methodology

To relate objective and subjective measures of sleep we performed a linear regres-
sion for modelling the total score from the SSA scale by a linear combination of
variables describing the sleep architecture.

The whole dataset was divided into two parts. The first part served for mod-
elling the SSA scores as a linear combination of sleep features. Because of pres-
ence of either redundant or irrelevant sleep features, right before models fitting
the feature selection procedure was performed in order to simplify the model.
More details about the procedure are given in the next section.

The second part (testing dataset) was used for checking the models’ qual-
ity by computing the Spearman’s correlation coefficient between the real and
predicted total SSA scores for the testing dataset.

To avoid problems caused by randomly splitting the dataset into two parts,
a 10-fold cross-validation was considered.

The procedure was performed separately for the variables from the PSM and
hypnogram as well as for joined datasets of sleep features. Furthermore, this was
done for the sleep recordings of the first night and second night separately.

Finally, to detect whether the differences in the correlations estimated using
different sets of sleep features are significant, the Student t–test and the Wilcoxon
rank–sum test were considered.
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4.1 Feature Selection

High number of features considered for the sleep models (25 standard sleep
features and 75 features for PSM) may cause inaccuracies in estimation of para-
meters in the linear regression model. Moreover, some of the features are redun-
dant – they are either highly correlated with other features or include only small
information about the sleep process.

Dimensionality reduction is important in machine learning. It leads not only
to a decrease in computational time, but may also increase the comprehensibility
and the performance of the model. It includes two main approaches – feature
extraction methods and feature selection techniques.

Feature extraction methods transform high–dimensional data into a vector
space with lower dimension by designing new variables expressed as a linear
combination of the original ones. Principal Component Analysis, Factor Analysis
and other techniques are typical representatives.

On the other hand, feature selection methods work only with original features
and they aimed to find the smallest subset of features with the most informative
features.

For the Rechtschaffen and Kales sleep model there is a standard set of sleep
features used in the majority of sleep studies. We aimed to design similar set of
features for PSM and therefore the feature selection approach is more appropri-
ate for our case.

In this study, we performed sequential feature selection procedure which exe-
cutes a sequential search among each candidate feature subset in order to find
out the smallest subset of features which is able to predict the SSA scores in the
best way. This algorithm is implemented for example in the function sequentialfs
in the MATLAB environment [10].

Similarly to the previous case the 20–fold cross–validation was used. In each
of 20 trials, one fold served as a validation dataset, the remaining part of 19 folds
formed a training dataset. A linear regression model was fitted to the training
dataset using a candidate subset of features. The mean squared error (MSE)
between the real and predicted SSA scores for the validation dataset measured
the quality of the model. The algorithm started with an empty feature set and
then candidate feature subsets were created by sequentially adding each of the
features not yet selected until there was no improvement in prediction.

The process resulted into 20 possibly different linear regression models. The
model with the lowest MSE in all was used in the further analysis.

5 Results and Discussion

In Table 2 average Spearman’s correlation coefficients between original and pre-
dicted total SSA scores are listed. Regarding the first night, the highest cor-
relations were obtained by considering joined datasets of sleep features for the
PSM and standard hypnogram (≈0.38). Using the standard sleep features only
the average correlation (≈0.37) was higher than in the case of the PSM sleep
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features (≈0.34). On other hand, because of high standard deviations the differ-
ences in results between all three cases were not significant.

Comparing results for the hypnogram features and PSM based sleep vari-
ables separately or results of joined datasets of features (Table 2) for the second
night the correlations are higher for the first two cases. However, the differences
between results were still not significant.

Similar values of mean squared error (Table 3) obtained in the last itera-
tion of the feature selection step confirmed similar performance of the standard
hypnogram and PSM.

These results contradict our expectations, that PSM includes more informa-
tion about the sleep process. A possible reason for no or only slight improvement
in the correlations may be that the designed sleep features for the PSM model do
not describe the dynamical behaviour of the probabilistic sleep curves properly.
The features extracted from the PSM (Sect. 3.2) were chosen so that they are nat-
ural counterparts of the standard hypnogram features or they highlight specific
properties of a sleep probabilistic curve. However, it is difficult to say whether
our features are the most appropriate. The major task for future research is to
design new features which would improve the results. Another idea is to use the
whole probabilistic sleep curves instead of their one–dimensional characteristics
for modelling the results of the subjectively scored sleep and awakening quality.

Table 2. Average Spearman’s correlation coefficients and their standard deviations for
the PSM based sleep measures, the standard hypnogram sleep features as well as for
joined datasets of sleep measures.

1. Night 2. Night

PSM

Wake stage 0.3551 ± 0.1732 0.2224 ± 0, 2500

S1 stage 0.2024 ± 0.2134 0.2886 ± 0.1778

S2 stage 0.3145 ± 0.2202 0.1921 ± 0.2053

SWS stage 0.2390 ± 0.2158 0.1653 ± 0.1892

REM stage 0.1358 ± 0.2025 −0.0048 ± 0.1836

All stages together 0.3396 ± 0.1800 0.2954 ± 0.1626

Standard features 0.3679 ± 0.2230 0.2762 ± 0.1349

PSM + standard features 0.3809 ± 0.2496 0.2688 ± 0.2238

On the other hand, considering a single sleep feature for predicting the SSA
scores in the testing dataset, the correlations were significantly lower or approx-
imately equal to the case when a linear combination of features was used. This
was true for both sleep models as well as for joined datasets of sleep features.

In addition, we were interested in sleep features which were selected in the
majority of trials. Regarding to the standard sleep features, only the time spent
in the S1 stage (total or relative) was selected in more than 7 trials (Table 4).
In the case of PSM especially sleep variables related to the Wake and S1 stages
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Table 3. An example of the mean squared error between real and predicted values of
the Self–rating questionnaire for sleep and awakening quality and sequences of chosen
sleep features in the feature selection step for the first night. For both sleep models
first three and the last iteration of a randomly chosen trail are described.

Model 1. Iteration 2. Iteration 3. Iteration Last iteration

Standard
features

76.64 67.20 62.75 61.86

- S1p eff, S1p eff, S1, S1p, S4p

PSM 76.11 66.5 64.17 58.47

- Am (Wake) Am (Wake),
psd (Wake)

Am (Wake), psd (Wake), psd
(S1), mom2 (Wake), mom1

(REM), . . .

dominated. Moreover, using the PSM sleep variables related only to the Wake
stage the third highest average correlation was observed for the first night.

Considering the joined datasets of sleep features, approximately the same
sleep variables related to wakefulness or light sleep were selected.

Finally we observed that the average correlations for the first night are higher
in comparison to the results of the second night. We hypothesise this is caused
by the “first night effect” – subjects usually sleep poor in a new environment
and feel tired in the morning. This is reflected by higher variability in values
of sleep features related to the Wake or S1 stage which were the most selected
sleep variables in the feature selection process as well as by possibly increased
variability in values of the SSA scores. Because of visible changes in sleep features
and SSA scores which are typical for the majority of the first nights data, the
observed correlations are expected to be higher than in the case of the second
night where this effect is diminished.

Table 4. List of features selected in at least 7 of 10 trials for each sleep model and
each night separately. In the case of joined datasets of the hypnogram and PSM based
sleep features the first mentioned are accentuated with italics.

1. Night PSM mom2 (Wake), AM (Wake), Am (Wake), Sm (S1)

Standard features S1, S1p

PSM + standard features mom2 (Wake), Sm (S1), psd (SWS), mom1

(REM), S2, FS

2. Night PSM Sm (S1), AM (Wake), Med (Wake), ent (REM)

Standard features S1p

PSM + standard features AM (Wake), Sm (S1), S1p

6 Conclusion

In this study we compared the quality of prediction of subjective sleep quality
scores using sleep features extracted from the standard hypnogram, the proba-
bilistic sleep model or both sleep models together.
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PSM based sleep features led to approximately equal or only slightly higher
average correlation coefficients in comparison to the case when a subset of stan-
dard hypnogram sleep features was considered. Because of high standard devia-
tions the Student t-test and Wilcoxon test were not able to reject the hypoth-
esis that the correlations are equal. The sleep features from both sleep models
together did not lead to significant improvement in prediction of the SSA scores.
From this point of view the standard hypnogram and PSM seem to be of equiv-
alent quality.

On the other hand, correlation coefficients estimated when the SSA scores
were modelled by a single sleep feature were either significantly lower or approx-
imately equal to the correlations between SSA scores and a linear combination
of sleep features.

In the feature selection step, sleep features representing the wakefulness or
light sleep were selected in the majority of trials for the hypnogram or PSM
related features separately as well as joined datasets of sleep variables. This
indicates that the subjectively scored sleep quality is influenced mainly by the
amount of the time spent awake or in the light sleep during the night.
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