
Kernel PCA Feature Extraction of
Event-Related Potentials for Human Signal

Detection Performance

Roman Rosipal, Mark Girolami
Department of Computing and Information Systems, University of Paisley

Paisley, PA1 2BE, Scotland

Leonard J. Trejo
Human Information Processing Research Branch, NASA Ames Research Center

Moffett Field, CA

Abstract

In this paper, we propose the application of the Kernel PCA technique for feature
selection in high-dimensional feature space where input variables are mapped by
a Gaussian kernel. The extracted features are employed in the regression problem
of estimating human signal detection performance from brain event-related po-
tentials elicited by task relevant signals. We report the superiority of Kernel PCA
for feature extraction over linear PCA.

1 Introduction

In many safety-critical applications (e.g., air traffic control, power plant operation,
military applications) control is based on the ability of human operators to detect and
evaluate task-relevant signals in the presented visual data. Performance quality of ope-
rators varies over time, often falling below acceptable limits, and may result in errors
with potentially serious consequences. The likelihood of such errors could be reduced
if physiological methods for assessment of human performance were available.

A fundamental part in the development of such a method is to construct a model
reflecting the dependence between selected physiological metrics of mental workload
(e.g., Event-Related Potentials (ERPs)) and the performance characteristics of a hu-
man operator (reaction time, accuracy, and confidence). Prior research has demon-
strated that linear regression and nonlinear neural networks can model the relation-
ships between ERPs and performance (see [1, 2, 3] and ref. therein). However, when
we attempt to develop such a model we are confronted with the curse of dimension-
ality, which arises from the complexity of physiological data. For example, 225 data
samples (dimensions) are required to describe a single 1.5ssegment of ERP data from
three electrodes. To address this problem, we can accept twogeneral assumptions
about the real world data sets. First, there exist some correlations among input vari-
ables; thus dimensionality reduction or so-calledfeature extraction allows us to restrict
the entire input space to a sub-space of lower dimensionality. Second, in many prac-
tical problems we can assume a smooth mapping from input to output space; thus we



can infer the values of the output for points where no input data are available. This
can be done by an appropriate regularization technique.

In this study, we have used the recently proposed Kernel PCA [4] method for fea-
ture selection in kernel space. This allows us to obtain features (nonlinear principal
components) with higher-order correlations between inputvariables, and second, we
can extract more components if the number of data points is higher than their dimen-
sionality [4]. The idea behind Kernel PCA [4] is based on computation of the standard
linear PCA in a high dimensional feature spaceF (with dimension

� ∞), into which
the input datax � RN are mapped via some nonlinear functionΦ�x�. To this end, we
compute a dot product in spaceF using a kernel function, i.e.K �x �y� � �Φ�x� �Φ�y��.
This ’kernel trick’ allows us to carry out any algorithm, e.gSupport Vector Regression
(SVR) [5], that can be expressed in the terms of dot products in spaceF . Next, we
used selected features to train SVR and Kernel Principal Component Regression to
estimate the dependency between ERPs and the performance ofthe individual sub-
jects. The results suggest the superiority of (nonlinear) Kernel PCA for feature extrac-
tion over linear PCA in some cases.

2 Methods

2.1 Kernel PCA, Multi-Layer SVR and Kernel PCR

The PCA problem in high-dimensional feature spaceF can be formulated as the dia-
gonalization of an-sample estimate of the covariance matrixĈ � 1

n ∑n
i�1 Φ�xi�Φ�xi�T �

whereΦ�xi� are centered nonlinear mappings of the input variablesxi � R N , i �
1� ����n. The diagonalization represents a transformation of the original data to new
coordinates defined by orthogonal eigenvectorsV. We have to find eigenvaluesλ � 0
and non-zero eigenvectorsV � F satisfying the eigenvalue equationλV � ĈV � Re-
alizing, that all solutionsV with λ 	� 0 lie in the span of mappingsΦ�x1� � ����Φ�xn � �
Schölkopf et. al. [4] derived the equivalent eigenvalue problemnλv � Kv � wherev
denotes the column vector with coefficientsv1 � � � � �vn such thatV � ∑n

i�1 viΦ�xi� and
K is a symmetricn 
n matrix with Ki j � �Φ�xi � �Φ�x j �� :� K �xi �x j �. Normalizing the
solutionsVk corresponding to the non-zero eigenvaluesλk of the matrixK, translates
into the conditionλk �vk �vk � � 1 [4]. Finally, we can compute the projection ofΦ�x�
onto thek-th nonlinear principal component by

q�x�k :� �Vk �Φ�x�� �
n

∑
i�1

vk
i K �xi �x� � (1)

We then select the firstr nonlinear principal components, e.g. the directions which
describe a desired percentage of data variance, and thus work in an r-dimensional
sub-space of feature spaceF . This allows us to construct multi-layer support vector
machines [4], where a preprocessing layer extracts features for the next regression or
classification task. In our study we focus on the regression problem.

Generally, the SVR problem (see e.g.[5]) can be defined as thedetermination of
function f �x �w� which approximates an unknown desired function and has the form
f �x �w� � �w �Φ�x�� � b � whereb is an unknown bias term,w � F is a vector of



unknown coefficients and�w �Φ�x�� is a dot product in spaceF . In [7] the following
regularized risk functional is shown to compute the unknowncoefficientsb andw:

Rreg �w� � 1
n

n

∑
i�1

�
Err

�
ε � η

2

�
w

�2 � (2)

whereErr � yi � f �xi �w�, η � 0 is a regularization constant to control the trade-
off between complexity and accuracy of the regression modeland

�
Err

�
ε is Vapnik’s

ε-insensitive loss-function [7]. In [7] it is shown that the regression estimate that
minimizes the functional (2) has the form:f �x �a �a� � � ∑n

i�1 �a�i � ai�K1 �xi �x� � b �
where�ai �a�i �n

i�1 are Lagrange multipliers [5].
Combining the Kernel PCA preprocessing step with SVR yieldsa multi-layer

SVR in the following form [4]: f �x �a �a� � � ∑n
i�1 �ai � a�i �K1 �q�xi� �q�x�� � b, where

components of vectorsq��� are defined by (1). However, in practice the choice of
appropriate kernel functionK1 ��� �� can be difficult. In this study, a polynomial ker-
nel of first orderK1 �x �y� � �x �y� is employed. We are thus performing a linear SVR
on ther-dimensional sub-space ofF . The advantage of linear SVR over ordinary
linear regression is the possibility of using a large variety of loss functions to suit
different noise models [5], e.g. the proposed Vapnik’sε-insensitive function is more
robust for noise distributions close to uniform. However, in the case of Gaussian
noise the best approximation to the regression provides a loss function of the form
L�yi � f �xi �c�� � �yi � f �xi �c��2. Therefore, we used a Kernel Principal Component
Regression1 technique which minimizes the following risk functional

Rpcr �c� � 1
n

n

∑
i�1

�yi � f �xi �c��2 �

The solutionf �x �c� has the form

f �x �c� �
r

∑
k�1

bkq�x�k � b0 �
r

∑
k�1

bk

n

∑
i�1

vk
i K �xi �x� � b0 �

n

∑
i�1

ciK �xi �x� � b0�

where�ci � ∑r
k�1 bkvk

i �n
i�1 and�q �x�k�r

k�1 are again defined by (1). The coefficients
�bk�r

k�0 can be found by solving thenormal equations for least squares estimation.

2.2 Data Sample Construction

We have used ERPs and performance data from an earlier study [2]. Eight male Navy
technicians experienced in the operation of display systems performed a signal detec-
tion task. Each technician was trained to a stable level of performance and tested in
multiple blocks of 50–72 trials each on two separate days. Blocks were separated by
1-minute rest intervals. A set of 1000 trials were performedby each subject. Inter-
trial intervals were of random duration with a mean of 3s and arange of 2.5–3.5s.
The entire experiment was computer-controlled and performed with a 19-inch color
CRT display. Triangular symbols subtending 42 minutes of arc and of three different
luminance contrasts (0.17, 0.43, or 0.53) were presented parafoveally at a constant

1A more detailed description of a Principal Component Regression is given in [6].



eccentricity of 2 degrees visual angle. One symbol was designated as the target, the
other as the non-target. On some blocks, targets contained acentral dot whereas the
non-targets did not. However, the association of symbols totargets was alternated be-
tween blocks to prevent the development of automatic processing. A single symbol
was presented per trial, at a randomly selected position on a2-degree annulus. Fix-
ation was monitored with an infrared eye tracking device. Subjects were required to
classify the symbols as targets or non-targets using buttonpresses and then to indicate
their subjective confidence on a 3-point scale using a 3-button mouse. Performance
was measured as a linear composite of speed, accuracy, and confidence. A single mea-
sure, PF1, was derived using factor analysis of the performance data for all subjects,
and validated within subjects. The computational formula for PF1 was

PF1 = 0.33�Accuracy + 0.53�Confidence - 0.51�Reaction Time

using standard scores for accuracy, confidence, and reaction time based on the mean
and variance of their distributions across all subjects. PF1 varied continuously, be-
ing high for fast, accurate, and confident responses and low for slow, inaccurate, and
unconfident responses.

ERPs were recorded from midline frontal, central, and parietal electrodes (Fz, Cz,
and Pz), referred to average mastoids, filtered digitally toa bandpass of 0.1 to 25 Hz,
and decimated to a final sampling rate of 50 Hz. The prestimulus baseline (200 ms)
was adjusted to zero to remove any DC offset. Vertical and horizontal electroocu-
lograms (EOG) were also recorded. Epochs containing artifacts were rejected and
EOG-contaminated epochs were corrected. Furthermore, anytrial in which no detec-
tion response or confidence rating was made by a subject was excluded along with the
corresponding ERP.

Within each block of trials, a running-mean ERP was computedfor each trial.
Each running-mean ERP was the average of the ERPs over a window that included the
current trial plus the 9 preceding trials for a maximum of 10 trials per average. Within
this 10-trial window, a minimum of 7 artifact-free ERPs wererequired to compute the
running-mean ERP. If fewer than 7 were available, the running mean for that trial was
excluded. Thus each running mean was based on at least 7 but nomore than 10 artifact-
free ERPs. This 10-trial window corresponds to about 30s of task time. The PF1 scores
for each trial were also averaged using the same running-mean window applied to the
ERPs, excluding PF1 scores for trials in which ERPs were rejected. Prior to analysis,
the running-mean ERPs were clipped to extend from time zero (stimulus onset time)
to 1500 ms post-stimulus, for a total of 75 time points.

3 Results

The present work was carried out with Gaussian kernels;K �x �y� � e
� � �x�y�2

L �, where
L is the width of the Gaussian function. The desired output PF1was linearly nor-
malized to have a range of 0 to 1. We trained the models on 50% ofthe ERPs and
tested on the remaining data. The described results, for each setting of the parameters,
are an average of 10 runs each on a different partition of training and testing data.
The validity of the models was measured in terms of the proportion of data for which



PF1 was correctly predicted with 10% tolerance, i.e�0�1 in our case. The perfor-
mance of a Regularized Gaussian RBF (rGRBF) network [8] and SVR trained on data
pre-processed by linear PCA (LPCA) in input space was compared with the results
achieved by multi-layer SVR (MLSVR) and the proposed KernelPrincipal Compo-
nent Regression (KPCR) on features extracted by Kernel PCA.In both cases we used
features (principal components) describing 99% of data variance. We usedε � 0�01,
η � 0�01 parameter values in the case of SVR. The results achieved on subject A (592
ERPs), B(614 ERPs) and C (417 ERPs) are depicted in Figure 1. On subjects A and
B we can see consistently better results on features extracted by Kernel PCA (top and
middle left graphs). These superior results achieved usingKernel PCA representation
were also observed on the remaining five subjects. In addition, we can see that in
all cases the SVR was superior to rGRBF on inputs extracted bylinear PCA (right
graphs). We have to note that on all subjects we achieved similar results with features
describing 98% of data variance. Without the PCA preprocessing step in feature space
F we did not increase the overall performance. On the contrary, on four subjects the
performance was on average decreased by 0.5% on test proportion error.
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Figure 1: Comparison of the results achieved on subjects A, Band C.



4 Conclusions

The selection of appropriate features for regression has been investigated. On subjects
A and B we demonstrated that (nonlinear) Kernel PCA providesa superior represen-
tation of the data set over that of linear PCA. However, on subject C the performance
with features selected by linear PCA was slightly better. Wehave to note, that in
this case the dimension of matrixK in feature spaceF is lower (209) than the in-
put dimensionality (225), thus we can not exploit the advantage of Kernel PCA to
improve overall performance by using more components in feature space than the
number available in the input space. We used features describing 99% of the data
variance that for different parameterL represents 70–90% of all nonlinear principal
components and we showed that such a reduction of high-dimensional feature space
F does not decrease the overall performance. Moreover, this can be seen as the de-
noising technique assuming that the noise is spread in directions with small variance.
On all subjects, we demonstrated that the performance of SVRon features extracted
by linear PCA was superior to Regularized Gaussian RBF.
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