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Abstract

In this paper, we propose the application of the Kernel P@Aneue for feature
selection in high-dimensional feature space where inptialvkes are mapped by
a Gaussian kernel. The extracted features are employed megiession problem
of estimating human signal detection performance fromrbeaient-related po-
tentials elicited by task relevant signals. We report thgesiority of Kernel PCA
for feature extraction over linear PCA.

1 Introduction

In many safety-critical applications (e.g., air traffic éah, power plant operation,

military applications) control is based on the ability ofrhan operators to detect and
evaluate task-relevant signals in the presented visual &arformance quality of ope-
rators varies over time, often falling below acceptabldtiirand may result in errors
with potentially serious consequences. The likelihooduahserrors could be reduced
if physiological methods for assessment of human perfoomarere available.

A fundamental part in the development of such a method is tstcoct a model
reflecting the dependence between selected physiologataios of mental workload
(e.g., Event-Related Potentials (ERPs)) and the perfocmaharacteristics of a hu-
man operator (reaction time, accuracy, and confidencepr Rssearch has demon-
strated that linear regression and nonlinear neural né&svoain model the relation-
ships between ERPs and performance (see [1, 2, 3] and re¢irtheHowever, when
we attempt to develop such a model we are confronted withuhgeof dimension-
ality, which arises from the complexity of physiologicatdaFor example, 225 data
samples (dimensions) are required to describe a singlesédgssent of ERP data from
three electrodes. To address this problem, we can accepgeweral assumptions
about the real world data sets. First, there exist some latiors among input vari-
ables; thus dimensionality reduction or so-cafleadure extraction allows us to restrict
the entire input space to a sub-space of lower dimensign&#&cond, in many prac-
tical problems we can assume a smooth mapping from inputtfmubspace; thus we



can infer the values of the output for points where no inpua dae available. This
can be done by an appropriate regularization technique.

In this study, we have used the recently proposed Kernel RIC&gthod for fea-
ture selection in kernel space. This allows us to obtairufest(nonlinear principal
components) with higher-order correlations between inpugbles, and second, we
can extract more components if the number of data pointgisehithan their dimen-
sionality [4]. The idea behind Kernel PCA [4] is based on camagon of the standard
linear PCA in a high dimensional feature spacdwith dimension< ), into which
the input data € R¥ are mapped via some nonlinear functi®(x). To this end, we
compute a dot product in spageusing a kernel function, i.&K(x,y) = (P(x).D(y)).
This 'kernel trick’ allows us to carry out any algorithm, &sgpport Vector Regression
(SVR) [5], that can be expressed in the terms of dot prodactpacer . Next, we
used selected features to train SVR and Kernel Principal foorent Regression to
estimate the dependency between ERPs and the performatioe ioidividual sub-
jects. The results suggest the superiority of (nonlineari€l PCA for feature extrac-
tion over linear PCA in some cases.

2 Methods

2.1 Kernd PCA, Multi-Layer SVR and Kernel PCR

The PCA problem in high-dimensional feature spacean be formulated as the dia-
gonalization of a-sample estimate of the covariance ma@ix % S D) D(xi)T,
where®(x;) are centered nonlinear mappings of the input variakles z *, i =
1,...,n. The diagonalization represents a transformation of tlgiral data to new
coordinates defined by orthogonal eigenvectbr$Ve have to find eigenvalu@s> 0
and non-zero eigenvectovse # satisfying the eigenvalue equatiav = CV. Re-
alizing, that all solution&/ with A # 0 lie in the span of mapping®(x1), ..., ®(xn),
Scholkopf et. al. [4] derived the equivalent eigenvaluebpemnAv = Kv, wherev
denotes the column vector with coefficiemts. .., vy such tha = S, vi®(x;) and
K is a symmetrie x nmatrix with Ki; = (®(x;).®(x;)) := K(xi,X;j). Normalizing the
solutionsV¥ corresponding to the non-zero eigenvaldgsf the matrixK, translates
into the conditiom(v.vK) = 1 [4]. Finally, we can compute the projection ®fx)
onto thek-th nonlinear principal component by

a0 = (VA:000) = 3 K., @

We then select the firstnonlinear principal components, e.g. the directions which
describe a desired percentage of data variance, and thisimvan r-dimensional
sub-space of feature spage This allows us to construct multi-layer support vector
machines [4], where a preprocessing layer extracts femafarghe next regression or
classification task. In our study we focus on the regressiohlpm.

Generally, the SVR problem (see e.g.[5]) can be defined addtemination of
function f(x,w) which approximates an unknown desired function and hasaime f
f(x,w) = (Ww.®(x)) + b, whereb is an unknown bias termy € # is a vector of



unknown coefficients anfv.®(x)) is a dot product in space . In [7] the following
regularized risk functional is shown to compute the unknoaefficients andw:

_1 . E w2 2
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whereErr =y; — f(x;,w), n > 0 is a regularization constant to control the trade-
off between complexity and accuracy of the regression made|Err|¢ is Vapnik's
e-insensitive loss-function [7]. In [7] it is shown that thegression estimate that
minimizes the functional (2) has the forni(x,a,a*) = y{',;(&" — a)K1(xi,x) + b,
where{a;, &}/, are Lagrange multipliers [5].

Combining the Kernel PCA preprocessing step with SVR yiedswulti-layer
SVR in the following form [4]: f (x,a,a*) = Si;(a —&")K1(q(xi),q(x)) + b, where
components of vectorg(.) are defined by (1). However, in practice the choice of
appropriate kernel functiol;(.,.) can be difficult. In this study, a polynomial ker-
nel of first orderKs(x,y) = (X.y) is employed. We are thus performing a linear SVR
on ther-dimensional sub-space of. The advantage of linear SVR over ordinary
linear regression is the possibility of using a large variet loss functions to suit
different noise models [5], e.g. the proposed Vapnékiasensitive function is more
robust for noise distributions close to uniform. However.the case of Gaussian
noise the best approximation to the regression providessaflonction of the form
L(yi, f(xi,C)) = [yi — f(xi,c)]?. Therefore, we used a Kernel Principal Component
Regressiohtechnique which minimizes the following risk functional

— 18 (X 2
Rper (€) = ﬁi;[yl — f(xi,0)]~.

The solutionf (x,c) has the form

n

f(x,c) = élbkq(X)k+ bo = kgbkév%‘K(xi,x) + b= -ZICiK(Xi’X) + by,

where{ci = S}_; bk}, and{q(x)k},_, are again defined by (1). The coefficients
{bx}}_o can be found by solving theormal equationsfor least squares estimation.

2.2 Data Sample Construction

We have used ERPs and performance data from an earlier gudsight male Navy
technicians experienced in the operation of display systeenformed a signal detec-
tion task. Each technician was trained to a stable level dbpmance and tested in
multiple blocks of 50-72 trials each on two separate dayscl& were separated by
1-minute rest intervals. A set of 1000 trials were perforrbgceach subject. Inter-
trial intervals were of random duration with a mean of 3s amdrege of 2.5-3.5s.
The entire experiment was computer-controlled and perarmith a 19-inch color
CRT display. Triangular symbols subtending 42 minutes ofeard of three different
luminance contrasts (0.17, 0.43, or 0.53) were presentefqeally at a constant

1A more detailed description of a Principal Component Resjogsis given in [6].



eccentricity of 2 degrees visual angle. One symbol was datégl as the target, the
other as the non-target. On some blocks, targets contaicedteal dot whereas the
non-targets did not. However, the association of symbdiargets was alternated be-
tween blocks to prevent the development of automatic peicgs A single symbol
was presented per trial, at a randomly selected position Dwlegree annulus. Fix-
ation was monitored with an infrared eye tracking devicebj&cts were required to
classify the symbols as targets or non-targets using bptesses and then to indicate
their subjective confidence on a 3-point scale using a 3buttouse. Performance
was measured as a linear composite of speed, accuracy, afiderwe. A single mea-
sure, PF1, was derived using factor analysis of the perfocmaata for all subjects,
and validated within subjects. The computational formolaHF1 was

PF1 = 0.33Accuracy + 0.53Confidence - 0.54Reaction Time

using standard scores for accuracy, confidence, and redttie based on the mean
and variance of their distributions across all subjectsl #&ried continuously, be-
ing high for fast, accurate, and confident responses anddosaldw, inaccurate, and
unconfident responses.

ERPs were recorded from midline frontal, central, and palredectrodes (Fz, Cz,
and Pz), referred to average mastoids, filtered digitally bandpass of 0.1 to 25 Hz,
and decimated to a final sampling rate of 50 Hz. The prestismibaseline (200 ms)
was adjusted to zero to remove any DC offset. Vertical andzbotal electroocu-
lograms (EOG) were also recorded. Epochs containing etdifaere rejected and
EOG-contaminated epochs were corrected. Furthermordriahin which no detec-
tion response or confidence rating was made by a subject waglexl along with the
corresponding ERP.

Within each block of trials, a running-mean ERP was compdi¢eceach trial.
Each running-mean ERP was the average of the ERPs over awvthebincluded the
current trial plus the 9 preceding trials for a maximum of iél$ per average. Within
this 10-trial window, a minimum of 7 artifact-free ERPs weegquired to compute the
running-mean ERP. If fewer than 7 were available, the rupmiean for that trial was
excluded. Thus each running mean was based on at least 7 imare¢han 10 artifact-
free ERPs. This 10-trial window corresponds to about 30asktime. The PF1 scores
for each trial were also averaged using the same runningymemlow applied to the
ERPs, excluding PF1 scores for trials in which ERPs weretaje Prior to analysis,
the running-mean ERPs were clipped to extend from time z#nm{lus onset time)
to 1500 ms post-stimulus, for a total of 75 time points.

3 Results

2
The present work was carried out with Gaussian kerng(g;y) = e‘(“X;LYLL), where
L is the width of the Gaussian function. The desired output &4 linearly nor-
malized to have a range of 0 to 1. We trained the models on 508te0ERPs and
tested on the remaining data. The described results, fbrssting of the parameters,
are an average of 10 runs each on a different partition ofitrgiand testing data.
The validity of the models was measured in terms of the prigoof data for which



PF1 was correctly predicted with 10% tolerance,4.@1 in our case. The perfor-
mance of a Regularized Gaussian RBF (rGRBF) network [8] /R 8ained on data
pre-processed by linear PCA (LPCA) in input space was coeatpatith the results
achieved by multi-layer SVR (MLSVR) and the proposed Kerehcipal Compo-
nent Regression (KPCR) on features extracted by Kernel RChoth cases we used
features (principal components) describing 99% of dateamae. We used = 0.01,

n = 0.01 parameter values in the case of SVR. The results achievsdlgect A (592
ERPs), B(614 ERPs) and C (417 ERPs) are depicted in Figurerkubjects A and
B we can see consistently better results on features eattégt Kernel PCA (top and
middle left graphs). These superior results achieved usargel PCA representation
were also observed on the remaining five subjects. In additi@ can see that in
all cases the SVR was superior to rGRBF on inputs extractelithbgr PCA (right
graphs). We have to note that on all subjects we achievedbsiresults with features
describing 98% of data variance. Without the PCA prepraogsgep in feature space
¢ we did not increase the overall performance. On the contoarjour subjects the
performance was on average decreased by 0.5% on test poopenror.
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Figure 1: Comparison of the results achieved on subjects @)dC.



4 Conclusions

The selection of appropriate features for regression has ineestigated. On subjects
A and B we demonstrated that (nonlinear) Kernel PCA provalssperior represen-
tation of the data set over that of linear PCA. However, orjetitC the performance
with features selected by linear PCA was slightly better. Walge to note, that in
this case the dimension of matrik in feature space is lower (209) than the in-
put dimensionality (225), thus we can not exploit the adagatof Kernel PCA to
improve overall performance by using more components itufeaspace than the
number available in the input space. We used features besgr99% of the data
variance that for different parametemrepresents 70-90% of all nonlinear principal
components and we showed that such a reduction of high-dioral feature space
7 does not decrease the overall performance. Moreover, dnide seen as the de-
noising technique assuming that the noise is spread intairscwith small variance.
On all subjects, we demonstrated that the performance of @vfeatures extracted
by linear PCA was superior to Regularized Gaussian RBF.
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