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Abstract

Independent component analysis (ICA) is a powerful toolsigparating signals
from their observed mixtures. This area of research hasupestimany varied
algorithms and approaches to the solution of this problehe majority of these
methods adopt a trulglind approach and disregard availablpriori information
in order to extract the original sources or a specific dessigdal. In this con-
tribution we propose a fixed point algorithm which utilizegriori information
in finding a specified signal of interest from the sensor measants. This tech-
nique is applied to the extraction and channel isolationleds spindles from a
multi-channel electroencephalograph (EEG).

1 Introduction

Sleep spindles are particular EEG patterns which occunduhe sleep cycle at 11.5
to 15 Hz, and are used as one of the features to classify tlygngastages of sleep.
The visual detection of sleep spindles is particularly diffi when multi-channel EEG
recordings are used due to inter-channel degradation dfl&®ep-spindle signatures
and other sources of unwanted signals which can be regairdptyss noise.

To aid the manual and possibly automatic detection of sleépdke activity, it
would be desirous to isolate the spindles in a single chaoffEEG measurements.
This could be possible by the application of a suitable fofrthe independent com-
ponent analysis (ICA) transform for the extraction of an information beayisignal.



Preliminary work on sleep spindle isolation has been regbitt Rosipal et al. [8].
ICA appeared recently as a promising technique for separatidependent sources
in biomedical signal processing [1, 6, 9]. ICA is based onftiilwing principle.
Assuming that the original (or source) signals have be@atiy mixed in some other-
wise unknown manner, and that these mixed signals are biea#a observations, ICA
is a single neuron network which seeks to find iolimad manner a linear combination
of the mixed signals which recovers the original sourceagrpossibly re-scaled and
randomly arranged in the outputs.

However, extracting all the independent signals from, famaple, a set of EEG
measurements can be a lengthy and computationally dengpdicess. Therefore,
in some cases, it may be important to extract only the sulisdgsred components
however these may be defined. In the case under considerttairof isolation of
sleep spindles, we would seek to extract only the sleep Esridr further possible
manipulation. To achieve thidesired signal extraction we propose the use of a single
neuron deflation algorithm along with the utilization of gapriori information avail-
able about the signal of interest. In fact, the deflation apph is important because
we can extract only one independent component out of theums@dsignals, instead
of separating all of them at once. However, as mentionedqusly, the independent
components are extracted in a non-deterministic mannes,ahy one of the signals
could potentially appear as the first extracted source. I\irgpthis problem, we use
thea priori information available about the desired signal as the itpuat standard
Wiener filter to initialize the signal extraction algorithm

In the literature, Rosipal et al. [8] were the first to sugdbat the application of
general ICA algorithms could minimize the channel overlathie transformed EEG,
thus possibly isolating the sleep-spindle patterns. Ojgative here is to enhance this
isolation and possible subsequent classification by apglgih ICA technique which
will enforce the extraction of the sleep spindles alonesThén ensures that the elec-
troencephalographer (or some automated classifier) wawiel bnly the sleep spindles
at hand, after processing the measured EEG with the propesetCA algorithm.

2 Second Order Statistics

Let us first define the problem in a framework that will be ugedughout this paper.
Considem statistically mutually independent signalss(k) = [s1(K),S2(K), - .., s(K)]T
arriving atn electrodes (or another type of receiver). Each electrodeives an un-
known linear combination of the signals. For simplicity, wél drop the iteration
indexk and only use when necessary, then we hawe[s;,s,...,s]". The mixed
signalsv are thus given by = As, whereA is ann x n invertible matrix. We as-
sume that we can observe only the mixturéloreover, without loss of generality, let
x = My, so thatE[xx"] = I. In practice, this operation will speed up the convergence
of the algorithm to be presented later, in addition to pradg@ simpler form of the
updating technique.

Our purpose is to find from the mixed observation vegtone given component

1This is a simplified model of the more general linear mixingdelovhere there may be modulation of
the source and observation dimensions and sensor noismajsbe included.



5 of the source signa, using somea priori information included in a signal, cor-
related withs, i.e.,E[ds] # 0. In carrying this out, we use all the components of the
input vectorx so that we havel = w'x, wherew is a weight vector to be estimated
by the adaptive algorithna is thereference signal and the error is given by=d — u.
The weights are updated by the minimization of the mean sguamor (MSE) given
by E[€].

One can find easily that the optimum weight, which minimizes MSE isw, =
R~!P, whereR andP are defined as the correlation matrix>oéind the cross corre-
lation matrix ofx andd respectively. Due to the spatial whitening of the obseorati
signalsE[xx"] = | the Wiener solution optimum weight vector is then given by

w, = R7IP = E[dx]. 1)

Barros et al. [1] have shown that in the presence of a refergigoal, second order
statistics are enough to provide separation of the sougrals.

3 |CA for Biomedical Signal Processing

The final objective of ICA is also to separate signals, underassumption that they
are mutually independent, in other words, the joint prolitldensity of the source
signals is the product of the marginal densities of the iiddial sourcesp(s) =
MM, p(s). The difference with the method in the previous section é thost of the
algorithms in the literature were proposed for separatiegtgnals in &lind manner.
Within this framework, ICA algorithms find a linear combiiaat of the elements of
x which gives the most independent components as the outually this output is
found using a matrixV, so that the elements af= Wx are approximately mutually
independent.

To find the matrixW, many different algorithms have been proposed in the litera
ture. However, we are interested in the ability to extraaemnove some given signal
from a number of measured signals. Therefore, instead ahfirehn x n matrix W
and from the output = Wx pick up the desired signal (as in [7]), we are interested in
finding only one component of z. Therefore, this component is given hy= W/ x,
whereWw; is one of the rows ofV.

Dropping the index for the purposes of exposition clarity, in the estimatiomof
we combine the following updating rules:

Wi 1 = E[x(W]x)3] — 3dg, 2)

Wicr1 = RieRz, (3)

whereRyz = E[x2"] and,Z(k) = [z(k—1)---z(k—L)]T, andL is a delay. In the above
equations, (2) is based on finding the extrema of the tram&fdroutput kurtosis [5].
As it may fail or show slow convergence in the case of low ndized values of

kurtosis, we use (3) to update the algorithm [3]. It has beend that the combination
of the two adaptive steps is a very efficient solution for thebpem of blind source
separation.



3.1 Proposed Algorithm

From the reasoning in the previous section, we propose fleniag fixed-point al-
gorithm:

e Perform a principal component analysis (PCA) decompasitio the sample
covariance matrix of the observation vecterand project onto the matrix of
normalized eigenvectotd such thatx = Mv andE[xx"] = 1.

e Take the initial vecto = E[dX]/||E[dX]||. Iteration numbek = 1.

e Updatew by, Wy, 1 = E[x(vAva)3] — 3Wy. If the normalized value of the sam-
ple kurtosis ofz is tending to zero, shift the updating to the kurtosis iramati
algorithm

Wir1 = RxzR3, (4)

¢ Divide Wy by its norm and update= k+ 1.

o Testif ||Wx —Wo|| < ¢, otherwise, change the current weight to the Wiener one,
added to a small random deviation. This step is importantisrantee that the
solution isspatially close to the Wiener one.

* Repeat the last three above steps Uhdif, ,Wy|| approaches 1 (up to a small
errory.

3.2 Signal Enhancement/Elimination

After obtaining the output = wMv using the algorithm described above, one may be
interested either in keeping this signal, or in removingadinfi the sensors for subse-
quent manipulation or analysis. In order to accomplishldgsoption, we can simply
use the Wiener filter as proposed above. This can be carrietyoestimating the
signalz using the previous ICA method, and computing its contriiuto each ele-
ment ofx. Thus, one can either have a vector of the contributiontofeach sensor
asy = bz, or the sensors with eliminated from it given by = v—bz From (1), we
find that the elements d&f are estimated by

b =E[vZ. (5)

4 Results

A seven minutes recording of 18 channels of EEG (Fpl, F8, EAFB, F7, T4, C4,
Cz, C3, T3, T6, P4, Pz, P3, T5, 02, O1) was used as the inpufafatae following
experiments to demonstrate the utility of the proposed@gogr to biomedical signal
processing. Electrodes were placed according to the imtiermal 10-20 system. The
data were digitized with a sampling rate of 102.4 Hz.

2The MATLAB code for this algorithm is available upon reque€r, if the reader is interested in a
version without a reference input, refer to the site in [2].



The measured signals were then filtered by a butterworth-pasd filter between
10 and 20 Hz. The signals were passed forward and backwardghrthe filter to
avoid phase distortion.

Channels HEO and Cz of the EEG were chosen as the referends iopextract
the sleep spindles. The results are shown in Fig.1 for a winafol0 seconds it is
clear that the sleep spindles have been extracted and dherigblated within this
single output channel. Notice that the outputs are alreadied in relation to the
references using (5).
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Figure 1: Example of two sleep spindles extracted from thedata.

5 Conclusions

In this paper we have introduced an algorithm which will grasseful in biomedical

signal processing where a specific underlying signal reguo be extracted from the
possibly noisy multi-channel recordings. This algoritrsraimodified version of the
that originally developed in [1]. Itis clear that this methis suitable for the extraction
of independent components from the measured EEG. Expetafrexiidence of the al-

gorithm’s ability to extract pre-specified signals has bg&en using multi-channel

EEG. The algorithm worked efficiently in extracting sleejinsites which were dis-

tributed throughout the measurement channels.
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