
Extraction of Sleep-Spindles from the
Electroencephalogram (EEG)

Allan Kardec Barros
Bio-mimetic Control Research Center, RIKEN,

2271-130 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463, Japan

Roman Rosipal, Mark Girolami
Department of Computing and Information Systems, University of Paisley

Paisley, PA1 2BE, Scotland

Georg Dorffner
Dept. of Medical Cybernetics and Artificial Intelligence, University of Vienna

Freyung 6/2, A-1010 Vienna, Austria

and

Austrian Research Institute for Artificial Intelligence

Schottengasse 3, A-1010 Vienna, Austria

Noboru Ohnishi
Bio-mimetic Control Research Center, RIKEN,

2271-130 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463, Japan

Abstract
Independent component analysis (ICA) is a powerful tool forseparating signals
from their observed mixtures. This area of research has produced many varied
algorithms and approaches to the solution of this problem. The majority of these
methods adopt a trulyblind approach and disregard availablea priori information
in order to extract the original sources or a specific desiredsignal. In this con-
tribution we propose a fixed point algorithm which utilizesa priori information
in finding a specified signal of interest from the sensor measurements. This tech-
nique is applied to the extraction and channel isolation of sleep spindles from a
multi-channel electroencephalograph (EEG).

1 Introduction

Sleep spindles are particular EEG patterns which occur during the sleep cycle at 11.5
to 15 Hz, and are used as one of the features to classify the varying stages of sleep.
The visual detection of sleep spindles is particularly difficult when multi-channel EEG
recordings are used due to inter-channel degradation of thesleep-spindle signatures
and other sources of unwanted signals which can be regarded simply as noise.

To aid the manual and possibly automatic detection of sleep spindle activity, it
would be desirous to isolate the spindles in a single channelof EEG measurements.
This could be possible by the application of a suitable form of the independent com-
ponent analysis (ICA) transform for the extraction of an information bearing signal.



Preliminary work on sleep spindle isolation has been reported in Rosipal et al. [8].
ICA appeared recently as a promising technique for separating independent sources
in biomedical signal processing [1, 6, 9]. ICA is based on thefollowing principle.
Assuming that the original (or source) signals have been linearly mixed in some other-
wise unknown manner, and that these mixed signals are available as observations, ICA
is a single neuron network which seeks to find in ablind manner a linear combination
of the mixed signals which recovers the original source signals, possibly re-scaled and
randomly arranged in the outputs.

However, extracting all the independent signals from, for example, a set of EEG
measurements can be a lengthy and computationally demanding process. Therefore,
in some cases, it may be important to extract only the subset of desired components
however these may be defined. In the case under consideration, that of isolation of
sleep spindles, we would seek to extract only the sleep spindles for further possible
manipulation. To achieve thisdesired signal extraction we propose the use of a single
neuron deflation algorithm along with the utilization of thea priori information avail-
able about the signal of interest. In fact, the deflation approach is important because
we can extract only one independent component out of the measured signals, instead
of separating all of them at once. However, as mentioned previously, the independent
components are extracted in a non-deterministic manner, thus any one of the signals
could potentially appear as the first extracted source. In solving this problem, we use
the a priori information available about the desired signal as the inputto a standard
Wiener filter to initialize the signal extraction algorithm.

In the literature, Rosipal et al. [8] were the first to suggestthat the application of
general ICA algorithms could minimize the channel overlap in the transformed EEG,
thus possibly isolating the sleep-spindle patterns. Our objective here is to enhance this
isolation and possible subsequent classification by applying an ICA technique which
will enforce the extraction of the sleep spindles alone. This then ensures that the elec-
troencephalographer (or some automated classifier) would have only the sleep spindles
at hand, after processing the measured EEG with the proposednew ICA algorithm.

2 Second Order Statistics

Let us first define the problem in a framework that will be used throughout this paper.
Considern statistically mutually independent signalss

�
k� � �s1

�
k� �s2

�
k� � � � � �sn

�
k��T

arriving atn electrodes (or another type of receiver). Each electrode receives an un-
known linear combination of the signals. For simplicity, wewill drop the iteration
index k and only use when necessary, then we haves � �s1 �s2 � � � � �sn�T . The mixed
signalsv are thus given byv � As � whereA is ann � n invertible matrix1. We as-
sume that we can observe only the mixturev. Moreover, without loss of generality, let
x � Mv � so thatE �xxT � � I. In practice, this operation will speed up the convergence
of the algorithm to be presented later, in addition to producing a simpler form of the
updating technique.

Our purpose is to find from the mixed observation vectorx one given component

1This is a simplified model of the more general linear mixing model where there may be modulation of
the source and observation dimensions and sensor noise alsomay be included.



si of the source signals, using somea priori information included in a signald, cor-
related withsi, i.e.,E �dsi� �� 0. In carrying this out, we use all the components of the
input vectorx so that we haveu � wT x, wherew is a weight vector to be estimated
by the adaptive algorithm,d is thereference signal and the error is given byε � d � u.
The weights are updated by the minimization of the mean squared error (MSE) given
by E �ε2�.

One can find easily that the optimum weight, which minimizes the MSE isw� �
R�1P, whereR andP are defined as the correlation matrix ofx and the cross corre-
lation matrix ofx andd respectively. Due to the spatial whitening of the observation
signalsE �xxT � � I the Wiener solution optimum weight vector is then given by

w� � R�1P � E �dx� � (1)

Barros et al. [1] have shown that in the presence of a reference signal, second order
statistics are enough to provide separation of the source signals.

3 ICA for Biomedical Signal Processing

The final objective of ICA is also to separate signals, under the assumption that they
are mutually independent, in other words, the joint probability density of the source
signals is the product of the marginal densities of the individual sources,p

�
s� �

∏M
i�1p

�
si�. The difference with the method in the previous section is that most of the

algorithms in the literature were proposed for separating the signals in ablind manner.
Within this framework, ICA algorithms find a linear combination of the elements of
x which gives the most independent components as the output. Usually this output is
found using a matrixŴ, so that the elements ofz � Ŵx are approximately mutually
independent.

To find the matrixŴ, many different algorithms have been proposed in the litera-
ture. However, we are interested in the ability to extract orremove some given signal
from a number of measured signals. Therefore, instead of finding ann �n matrix Ŵ
and from the outputz � Ŵx pick up the desired signal (as in [7]), we are interested in
finding only one componentzi of z. Therefore, this component is given byzi � ŵT

i x,
whereŵi is one of the rows ofŴ.

Dropping the indexi for the purposes of exposition clarity, in the estimation ofŵ,
we combine the following updating rules:

ŵk�1 � E �x�
ŵT

k x�3� � 3ŵk � (2)

ŵk�1 � Rxz̃Rz̃z � (3)

whereRxz̃ � E �xz̃T � and,z̃
�
k� � �z�k � 1� � � �z�k � L��T , andL is a delay. In the above

equations, (2) is based on finding the extrema of the transformed output kurtosis [5].
As it may fail or show slow convergence in the case of low normalized values of
kurtosis, we use (3) to update the algorithm [3]. It has been found that the combination
of the two adaptive steps is a very efficient solution for the problem of blind source
separation.



3.1 Proposed Algorithm

From the reasoning in the previous section, we propose the following fixed-point al-
gorithm:

� Perform a principal component analysis (PCA) decomposition on the sample
covariance matrix of the observation vectorsv and projectv onto the matrix of
normalized eigenvectorsM such that,x � Mv andE �xxT � � I.

� Take the initial vector̂w0 � E �dx�� ��E �dx� ��. Iteration numberk � 1.

� Updateŵ by, ŵk�1 � E �x �
ŵT

k x�3� � 3ŵk � If the normalized value of the sam-
ple kurtosis ofz is tending to zero, shift the updating to the kurtosis invariant
algorithm

ŵk�1 � Rxz̃Rz̃z � (4)

� Divide ŵk by its norm and updatek � k � 1.

� Test if
��
ŵk � ŵ0

�� �
ζ, otherwise, change the current weight to the Wiener one,

added to a small random deviation. This step is important to guarantee that the
solution isspatially close to the Wiener one.

� Repeat the last three above steps until
��
ŵT

k�1ŵk
��

approaches 1 (up to a small
error)2.

3.2 Signal Enhancement/Elimination

After obtaining the outputz � ˆwMv using the algorithm described above, one may be
interested either in keeping this signal, or in removing it from the sensors for subse-
quent manipulation or analysis. In order to accomplish thislast option, we can simply
use the Wiener filter as proposed above. This can be carried out by estimating the
signalz using the previous ICA method, and computing its contribution to each ele-
ment ofx. Thus, one can either have a vector of the contribution ofz to each sensor
asy � bz, or the sensors withz eliminated from it given bỹy � v � bz. From (1), we
find that the elements ofb are estimated by

b � E �vz� � (5)

4 Results

A seven minutes recording of 18 channels of EEG (Fp1, F8, F4, Fz, F3, F7, T4, C4,
Cz, C3, T3, T6, P4, Pz, P3, T5, O2, O1) was used as the input datafor the following
experiments to demonstrate the utility of the proposed approach to biomedical signal
processing. Electrodes were placed according to the international 10-20 system. The
data were digitized with a sampling rate of 102.4 Hz.

2The MATLAB code for this algorithm is available upon request. Or, if the reader is interested in a
version without a reference input, refer to the site in [2].



The measured signals were then filtered by a butterworth band-pass filter between
10 and 20 Hz. The signals were passed forward and backward through the filter to
avoid phase distortion.

Channels HEO and Cz of the EEG were chosen as the reference inputs to extract
the sleep spindles. The results are shown in Fig.1 for a window of 10 seconds it is
clear that the sleep spindles have been extracted and therefore isolated within this
single output channel. Notice that the outputs are already scaled in relation to the
references using (5).
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Figure 1: Example of two sleep spindles extracted from the raw data.

5 Conclusions

In this paper we have introduced an algorithm which will prove useful in biomedical
signal processing where a specific underlying signal requires to be extracted from the
possibly noisy multi-channel recordings. This algorithm is a modified version of the
that originally developed in [1]. It is clear that this method is suitable for the extraction
of independent components from the measured EEG. Experimental evidence of the al-
gorithm’s ability to extract pre-specified signals has beengiven using multi-channel
EEG. The algorithm worked efficiently in extracting sleep spindles which were dis-
tributed throughout the measurement channels.
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