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We  are introducing and validating an EEG data-based model of the sleep process with an

arbitrary number of different sleep stages and a high time resolution allowing modeling of

sleep microstructure. In contrast to the standard practice of sleep staging, defined by scoring

rules, we describe sleep via posterior probabilities of a finite number of states, not neces-

sarily reflecting the traditional sleep stages. To test the proposed probabilistic sleep model

(PSM) for validity, we correlate statistics derived from the state posteriors with the results

of  psychometric tests, physiological variables and questionnaires collected before and after

sleep.  Considering short, in this study 3 s long, data window the PSM allows describing the

sleep  process on finer time scale in comparison to the traditional sleep staging based on

20  or 30 s long data segments visual inspection. By combining sleep states and using two

measures derived from the posterior curves we show that the average absolute correlations

between the measures and subjective and objective sleep quality measures are considerably

higher when compared with the analogous measures derived from hypnograms based on

sleep staging. In most cases these differences are significant. The results obtained with the

PSM  support its wider use in sleep process modeling research and these results also suggest
that EEG signals contain more information about sleep than what sleep profiles based on

discrete stages can reveal. Therefore the standardized scoring of sleep may not be sufficient

to  reveal important sleep changes related to subjective and objective sleep quality indexes.

The  proposed PSM represents a promising alternative.
.  Introduction
leep is by no means a monolithic state but a complex, often
yclic process of different physiological modalities, as can
e observed by means of electroencephalography (EEG) and
ther electrophysiological measures. Sleep research and sleep
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medicine usually distinguish a small number of different sleep
stages according to the type of sleep (rapid eye movement
sleep, or REM, vs. non-REM, or NREM) and the sleep depth
Republic. Tel.: +421 2 59104511.

within NREM. The manual devised by Rechtschaffen and Kales
[1] (RK) and the recently published update of sleep scoring
rules [2] assign either stage wake (W), one of the NREM sleep
stages S1, S2, S3, S4 (or N1, N2, and N3, respectively) or REM (R)1

erved.
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to a given 30 s interval using polysomnographic (PSG) record-
ings. The borders between the NREM stages are more  or less
arbitrarily defined. The emphasis has been put on consis-
tent rules based on visually identifiable signal features, such
that different practitioners will come to the same reasonable
assignment of sleep stages to the 30 s intervals. Examples
of such features are alpha or delta waves, sleep spindles,
k-complexes in the EEG, rapid eye movements in the EOG
(electrooculography), and low muscle tone in the submental
EMG  (electromyography), encompassing the three major elec-
trophysiological sources in PSG.

Visual sleep scoring based on the above-mentioned rules,
as is common practice or even gold standard in both sleep
research and sleep disorder diagnosis, exhibit large variations
between different experts, mainly stemming from the fact that
many of the necessary features are difficult to recognize, on
one hand, and from the fact that the rules linking the fea-
tures to the sleep stages are too vaguely defined, on the other.
There have been several successful attempts to automate the
process of assigning a sleep stage in order to eradicate such
variability; for example, the automatic scoring system Som-
nolyzer24x7 [3].

Still, strong criticism of traditional sleep staging abounds
in sleep research. Himanen and Hasan [4] criticized that the
division into a few sleep stages is based on the knowledge of
sleep processes which was valid at the time when the rules
were developed, but has not been revised since. For instance,
they mentioned that at least two different wakefulness stages
exist or that S2 is a heterogeneous stage which should be sub-
divided. Also, the time resolution of 30 s epochs is based on the
old practice of paper-EEG and thus bears no useful relationship
to physiological reality and is likely to miss important events
on a smaller scale. Schulz [5] argues along similar lines view-
ing standard sleep staging as no longer fully appropriate in an
age where all data is available in digital form ready for com-
puter processing. He calls for alternatives for sleep analysis
that go beyond the brittle stages, subdivide NREM sleep in a
more  fine-grained manner, and is not limited by what can be
visually identified in the signal.

We  would like to present an approach which allows for the
description of sleep on a higher time resolution, allowing for
continuous transitions from one sleep stage to another (prob-
abilistic sleep model, PSM). Although we do not fully abandon
the staging systematics, we primarily build our model on the
underlying data structure without immediately putting too
much emphasis on strict staging labels. We  do, however, use
staging labels as a means of providing our model with some
physiological meaning resembling the RK physiological inter-
pretation.

Our model is based on Gaussian mixture models used to

describe the density of data representing sleep, implicitly con-
taining Gaussian kernels corresponding to natural clusters in
the data. While these clusters cannot be interpreted directly,

1 While recognizing the existence of two rules sets for sleep stag-
ing  which are currently followed in the sleep community, we will
henceforth focus on RK labels only. The main points of this work
would apply for comparisons with AASM sleep stage labels, as
well.
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 961–972

we use them either to derive variables about sleep architecture
or, alternatively, to calculate posterior probabilities for short
data segments to belong to one of the traditional stages. These
probabilities then form a continuous and high time resolution
sleep profile replacing the rigid stages, potentially reflecting
important information about the microstructure of sleep that
is overlooked in the classical staging paradigm.

The idea of using posterior probabilities to express the
belief that a given observation stems from a certain sleep stage
is not new and arises automatically in certain contexts. For
instance, the softmax activation function can be used in the
output layer of a Feedforward Classification Network to predict
the posterior probabilities given the input [6].  Considering the
probabilistic output representation, Roberts et al. [7] described
sleep as a mixture of three cornerstones “wake”, “REM” and
“deep sleep”. The authors assumed that these sleep stages are
seldom mislabeled and, furthermore, that other sleep stages
such as S1 and S2 can be seen as transitions between the
cornerstones. Roberts et al. [7] worked with features which
are 10-dimensional parameter vectors gained from fitting an
autoregressive model (AR) to short 1 s intervals of the EEG time
series. Each AR model is connected to a frequency distribution,
and the AR vector can be interpreted as a way of describing the
frequency spectrum for the given interval. Instead of using
neural network related features with posterior probabilities,
Penny and Roberts [8] worked with Gaussian Observation Hid-
den Markov Models (GOHMM), whereby they demonstrated
the applicability by means of artificially generated data. Again,
AR vectors, or the according extension for multivariate time
series, were employed. Flexer et al. [9] adapted this approach
using a different feature vector and worked with real data.
During the first step, for each of the cornerstones the den-
sity of the feature vector is approximated by a multivariate
normal distribution using data intervals with staging labels
only. The feature vector consists of the first reflection coeffi-
cient and a temporal complexity measure derived from the
EEG time series, as well as a measure for EMG power. The
temporal resolution was set to 1 s.

Rosipal et al. [10] used a hierarchical Gaussian mixture
model. Once again, vectors of coefficients of fitted AR mod-
els for 3 s segments were used as feature vectors. The staging
labels were used to partition the training set, and for each
sleep stage, the density of feature vectors was fitted by a mix-
ture of Gaussians (in contrast to the GOHMM model mentioned
above for which a single Gaussian per sleep stage was used).
The approach described by Rosipal et al. shows another sub-
tlety: after fitting of class-conditional mixtures for each sleep
stage, unlabeled data points were added to let the Gaussians
better adjust to the general distribution of feature vectors.

A novel probabilistic sleep model (PSM) is presented in this
paper. The PSM differs from the previous probabilistic sleep
models by the important property that a rigid structure of dis-
crete sleep stages is not considered a priori. Instead a higher
number of raw sleep states – called microstates – is determined
by optimizing a criterion of describing the distribution of mea-
sured physiological data as closely as possible. Microstates can

be combined into subsets and their physiological interpreta-
tion and a specific task related performance can be studied. By
considering data periods with staging labels, probabilities of
each microstate toward one of the five standardized stages can

dx.doi.org/10.1016/j.cmpb.2012.05.009
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y determined during the training process and sleep structure
erived. In addition to the PSM definition and training proce-
ure description, the aim of this study is to show that the PSM
uilt on EEG data only can provide more  information about
leep than the standardized RK staging. This is demonstrated
n a task of searching for objective sleep components cor-
elating with subjective and objective sleep quality day time

easures.
In the following section we  present our PSM model, as well

s our strategy to validate it with respect to clinical validity.
esults are presented in the subsequent section.

.  Methods

.1.  Motivation  and  assumptions

he main motivation behind the choice of the components of
he probabilistic sleep model (PSM) were the following ideas:

 The model, in its first instantiation is meant to be based on
EEG data alone, while future extensions could encompass
other electrophysiological signals, as well.

 The main basis of the model should be a compact descrip-
tion of the EEG signal on a time resolution well below 30 s
epochs. Here we  choose 3 s as the length of nonoverlap-
ping segments to be analyzed. We  choose an autoregressive
(AR) model of order 10 to describe spectral content.
Coefficients from an AR model can be seen as implicit semi-
nonparametric descriptors of a signal’s spectrum, freeing
us from using arbitrary frequency bands in a Fourier trans-
formation. The similar way of representing sleep EEG data
has been used in other studies (for example [11,12]). The
selection of an AR model needs to balance the factor of
underestimating and overestimating of spectral profiles of
different sleep stages, therefore its rigorous selection is dif-
ficult. Moreover, this would need to be done in accordance
with tuning the parameters of the PSM and the follow up
correlations estimation task.
We  describe the EEG observations by an estimated semi-
nonparametric density distribution of spectral features (AR
coefficients), covering the range of possible electrophysi-
ological expressions of the underlying brain activity. We
choose a Gaussian mixture model with 20 Gaussian ker-
nels as the method for density estimation. Implicitly, such a
density estimation describes the space of AR coefficients in
terms of Gaussian clusters, which could be termed sleep
microstates. We do not claim any physiological interpre-
tation to such clusters given the general identifiability
problem of such an approach. We do, however, consider the
trajectory across such microstates as a potential descrip-
tion of sleep architecture containing more  information than
traditional sleep stages.

All model parameters (length of signal segment, AR model
rder, number of Gaussian kernels) were chosen empirically

s being sufficient to yield a reasonably fine-grained descrip-
ion of sleep EEG. Since not all single microstates (clusters) are
xpected to possess an unambiguous physiologically interpre-
ation, for example assigned by the RK staging rules, perfect
 o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 961–972 963

model selection was not deemed necessary. Overfitting can
definitely be excluded given the high number of signal data
used for model estimation. Thus, the choice of parameters was
based on empirical considerations; e.g., 3 s was deemed as a
compromise between high temporal resolution and the abil-
ity to reliably estimate low frequency parts of the spectrum,
while AR models of higher order or Gaussian mixture mod-
els with more  kernels did not lead to significantly improved
descriptions of the data density.

Validating such a data-based model of sleep poses a chal-
lenge due to the lack of direct measures of comparison. In this
paper we  chose to investigate the following:

• First, we directly compare traditional sleep stages with the
PSM’s microstates. One of the hypotheses behind distin-
guishing sleep stages in sleep research is that the resulting
sleep architecture (hypnogram) contains information about
the quality of sleep. Among the many  variables that can be
calculated for that purpose are the time (percentage) spent
in each sleep stage, and the frequency of stage shifts. Simi-
lar variables can be calculated when looking at microstates
in the PSM. As an outside measure for sleep quality a
number of objective and subjective tests performed by a
subject in the morning after sleep are considered. The main
hypothesis is the following: If the PSM indeed contains more
information about the microstructure of sleep, then sleep
architecture variables from the PSM have a higher correla-
tion with outside quality variables than sleep architecture
variables based on sleep staging.

• Secondly, we demonstrate how the PSM can be used to
derive probabilities for traditional sleep stages, as well as
for the important spindle process, and thus to create a con-
tinuous sleep profile in physiologically meaningful terms.

• Thirdly, we investigate the prototypical spectral contents of
each microstate (via the AR coefficients of the cluster mean)
and demonstrate how this, together with the stage proba-
bilities can help interpret the PSM in physiological terms.

2.2.  The  PSM  in  detail

2.2.1.  Modeling  data  density  and  microstates
We  partition the EEG signal into disjunct 3 s segments. For each
segment an autoregressive model of order 10 was fitted with
the Burg method and the resulting AR(10) parameter vector
was used as a feature vector x. A Gaussian mixture model is
then estimated in the 10-dimensional space of AR coefficients
(see Eq. (1)), based on the idea that the unobservable space of
possible brain states can be partitioned into a finite number
of disjunct states; in this study numbered from 1 to K. The
number itself is an identifier and the meaning of each state
is derived from the observed sensor data. To distinguish the
states 1 to K from the classical sleep stages, we denote them
as “microstates”.
p(x) =
K∑

k=1

�kN(x|�k, ˙k) (1)

dx.doi.org/10.1016/j.cmpb.2012.05.009
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2.2.2.  Tying  microstates  to  sleep  stages  and  spindles
As mentioned above, microstates as derived through a Gaus-
sian mixture model do not necessarily have a physiological
meaning. One way to assign such meaning (out of several con-
ceivable ways) is to calculate a relation between microstates
and the traditional sleep stages in a probabilistic way. Here
we  use stages as defined by Rechtschaffen and Kales (hence-
forth, denoted as RK stages), while collapsing stages S3 and
S4 into one stage SWS  (slow wave  sleep). Furthermore, we
apply a spindle detector to the original EEG signal [3].  The
spindle detector distinguishes between “possible”, “probable”
and “certain” spindles, based on linear discriminant analysis
on spectral features, and thus creates four classes (including
“no spindle”), denoted here as 0, 1, 2 and 3, respectively. By
using this additional spindle detection we assign physiologi-
cal meaning to a separate spindle process, which, while being
correlated with stage S2, is still independent from stages. If
we again denote the AR(10) parameter vector by x, the spindle
class by s and the RK label by c, then the PSM assumes the exis-
tence of an unobserved latent variable z (the microstate from
the Gaussian mixture) with K possible states and the following
relationship between the considered variables

p(z, x, c, s) = p(z)p(x|z)pR(c|z)pS(s|z) (2)

By integrating the variable z out we have

p(x, c, s) =
K∑

z=1

p(z)p(x|z)pR(c|z)pS(s|z) (3)

where the conditional probability p(x|z) is modeled by a Gaus-
sian N(�z, ˙z) for each z ∈ {1, . . .,  K}, pR(c|z) can be described for
a given z by a vector assigning probabilities (which sum up to
1) to each of the possible sleep stages; wake, S1, S2, SWS  and
REM. Analogously, pS(s|z) is a 4-dimensional vector assigning
probabilities to each of the spindle classes s ∈ {0, 1, 2, 3}. If all
quantities are known, then Eq. (2) assumes that after the value
z has been generated with probability p(z), the AR(10)-vector
x, spindle class s and RK label c are independently distributed.

Seeger [13] used the name separator model for a simpler vari-
ant of (2) with one class variable only. Miller and Uyar [14] also
worked with the simpler variant, but in a general context and
not for modeling of the sleep process.

2.2.3.  Fitting  the  PSM
For fitting and validating the model data from the SIESTA
database [15] were used. The database includes PSG record-
ings of two consecutive nights (on days 7 and 8 of a 14 days
long observation time period) from 175 normal healthy sub-
jects (81 men  and 94 women, no shift workers, no depression,
usual bedtime before midnight). All subjects included had a
Pittsburgh Sleep Quality Index [16] of at most 5. The data
were collected from 7 different sleep laboratories, age ranges
from 20 to 95 years, with an average of 50.2 ± 19.5. In the
study, data from the C3-M2 EEG channel were used. If artifacts

occurred the channel was replaced by C4-M1. EEG segments,
for which both channels show artifacts, were ignored. The arti-
fact detection procedure of the Somnolyzer24x7 was applied
for detecting eye, muscle, sweat and EEG amplitude related
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 961–972

artifacts. A band-pass Butterworth filter of order 8 and a fre-
quency range from 0.4 to 40 Hz was applied and EEG data were
down-sampled to 100 Hz.

By combining all observations of all subjects more  than
N = 3,130,000 observations without artifacts were available for
training and testing the PSM. On average, this represents about
9000 usable observations per night and subject. Therefore, we
worked with N observed AR(10) vectors xi, N spindle classes
si and N RK labels ci (i = 1, . . .,  N). The PSM model can be
derived without the RK labels. However, for the interpreta-
tion of microstates within the RK sleep structure the labels are
needed. The extent to which we  use RK labels, however, can be
seen as a factor which determines the balance between freely
fitting underlying data structure and fitting the data to most
closely following the RK structure. The RK labels were obtained
with the automatic sleep stager Somnolyzer24x7 [3].  Som-
nolyzer24x7 works with 30 s intervals and uses additional PSG
data (electrooculogram, electromyogram, etc.). In this study
the same RK label was used for all 3 s segments inside a 30 s
interval.

The fitting procedure using the expectation-maximization
(EM) algorithm is explained in Appendix A. The algorithm
tries to maximize the log-likelihood by distributing the Gaus-
sians over the space of AR(10) vectors, but in addition taking
into account which spindle classes and RK labels have been
observed.

After running the EM algorithm the following estimators
are determined: priors p̂(z) and Gaussians p̂(x|z), with the
expectation vector �z and the covariance matrix ˙z, for each
microstate z = 1, . . .,  K; p̂R(c|z) and p̂S(s|z) the probabilities to
generate a RK class c and a spindle class s, given the microstate
z = 1, . . .,  K. Assuming a sufficiently large amount of data N the
fitting of the model was carried out once. Applying our model
to new data means that based on the observed AR(10) vector
xi and the calculated spindle class si the posterior probability
p(z|xi, si) can be calculated

p(z|xi, si) = p̂(z)p̂(xi|z)p̂S(si|z)∑K

k=1p̂(k)p̂(xi|k)p̂S(si|k)
(4)

Next, the posterior probability p(c|xi, si) can be assigned for
each RK stage

p(c|xi, si) =
K∑

z=1

p(z|xi, si)p̂R(c|z) (5)

The approach presented can be seen as a form of soft clus-
tering. Any new observation is not completely assigned to a
single microstate, but is, via the posteriors, related to more
than one microstate. The magnitudes of posteriors p(z|x, s)
reflect how typical an observation is for each microstate com-
pared to all other states. These posteriors describe whether an
observation clearly stems from a certain state or whether it is
more a border case which could have been generated by more
than one state.
2.2.4. Model  validation
In the main part of model validation we  aim to prove that the
PSM contains more  information about sleep than a traditional

dx.doi.org/10.1016/j.cmpb.2012.05.009
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sleep quality variable, the effect was compensated by sub-
tracting a second order polynomial fitted to the data in a least
square sense. This was also done if the significant age effect

2 Note that although the latter two bootstrap samples are larger
c o m p u t e r m e t h o d s a n d p r o g r a m s 

leep profile based on 30 s sleep stages (hypnogram). It is
ommon practice in sleep research and medicine to calculate
ariables from a hypnogram that summarize a sleep night,
nd which supposedly measure the overall sleep quality.
mong those variables are

The time (or percentage) spent in each sleep stage, quanti-
fying the main components of sleep.

 The number of sleep stage changes (shifts from one stage
to the other), quantifying the fragmentation and dynamics
of the sleep profile.

We chose these two variable classes since they can be easily
ranslated into similar variables based on microstates instead
f sleep stages. In order to judge the information contained

n such variables, we  chose to correlate them with indepen-
ent outside measures of sleep quality such as subjective and
bjective tests performed by a subject in the evening before, or

n the morning after sleep. The SIESTA dataset contains many
uch tests, including

 A self-rating questionnaire about sleep and awakening
quality [17].

 Several visual analogue scales measuring mood, drowsiness
and similar states.

 Physiological measures such as blood pressure and pulse
rate.

 Paper-and-pencil psychometric test on aspects like fine
motor activity or memory  [18].

The corresponding variables are listed in Table 1. The main
ypothesis was that variables derived from the PSM have a
igher correlation with these outside measures than variables
erived from sleep staging.

.2.4.1.  Time  spent  in  a  stage  or  microstate:  PRK  and  RTS.  Using
K labels, the percentage of time spent in each sleep stage,
ith respect to the total time in bed (time from “lights out”

o “lights on”), can be calculated. We  denote these variables
s PRK. A corresponding measure in the PSM would be “rel-
tive time spent in a microstate” (RTS). Such a variable can
e calculated for a given microstate by summing the poste-
ior probabilities of a 3 s epoch being in that microstate over
he night and divide it by the total time in bed. A variable in
TS will therefore consider both the frequency how often a
icrostate is visited and the intensity of a visit. For instance,

en 3 s intervals with a posterior of 0.4 count as much as five
ntervals with 0.8.

Given the high number 20 of microstates, however, we
annot expect that a single one of them contains similar infor-
ation as an entire RK stage. Therefore, we considered the

ombination of microstates into groups with potentially new
eanings. The RTS for this combination is then the sum of

he RTS values of the combined microstates. In this study the
icrostates were combined in a goal-oriented way such that

orrelations of RTS with a given outside sleep quality variable

re maximized.

To get a fair performance estimate and to exclude the
ossibility of overfitting an experiment with 50 runs and boot-
trap samples was performed. Three independent bootstrap
 o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 961–972 965

sets with 175, 350 and 350 subjects were generated. For each
selected subject recordings of both nights were used.2 This
was done for each run, duplicates were allowed and for a
selected subject the data of both nights were used. The first
sample was used to fit the PSM with 20 microstates. Further-
more, for each outside sleep quality variable from Table 1, a
sequence of optimal subsets of PSM variables, each maximiz-
ing the correlation for a given subset size, was constructed.
The second bootstrap sample was used to compare the per-
formances of the sequence and to choose the subset in the
sequence with the largest absolute correlation. The third boot-
strap sample was used to compute the final correlation of the
chosen subset and used as a performance measure. The subset
sizes considered ranged from 1 to 8, with a full enumeration
from 1 to 3 and a stepwise procedure from 4 to 8.

Similarly, the PRK variables were first computed on the first
bootstrap sample and the RK stage with the maximum corre-
lation was chosen. The third bootstrap sample was then used
to compute the final correlation for the selected RK stage. The
correlation values computed on groups of microstates were
compared with the correlations considering the RK staging. A
sign test with a Bonferroni correction was performed for the
hypothesis of equal medians of both (  ̨ = 0.00038).

2.2.4.2.  Fragmentation  of  sleep:  NOV  and  TRK.  Next, the sec-
ond class of variables “Number of (sudden) visits” (NOV)
was employed. These variables measure how often certain
microstates are visited and in this way assigns their impor-
tance. A transition between any microstate and a given one
was defined if the posterior probability between two consec-
utive 3 s segments was increased by a value higher than a
threshold (in our study equal to 0.5). This approach counts
sudden transitions between microstates as, for instance, can
be caused by arousals or other shifts in frequency. A similar
measure was defined for a combination of microstates by first
adding the posteriors of all considered microstates and then
testing the same condition with the sum of posteriors instead
of a single posterior.

For the RK labels, a similar measure computing the num-
ber of transitions from different RK (TRK) stages to a given
stage was applied. The same amount of 50 bootstrap runs
were used, but a PSM with 10 microstates only was considered.
This was due to the fact that calculating the NOV statistics
is time-consuming and has to be repeated for each subset of
microstates. This is in contrast with RTS where its value for a
subset can be immediately computed as the sum of the RTS
values of single microstates.

A significant age effect was observed for some of the sleep
quality variables of Table 1. Therefore, if a significant correla-
tion (  ̨ = 0.05) was observed between age and an investigated
than the entire data set, on average they will have about 130
subjects (or 260 recordings) in common. Thus this procedure
allows for a true statistical validation on novel data given the
mechanics of bootstrapping.

dx.doi.org/10.1016/j.cmpb.2012.05.009
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Table 1 – Average absolute Spearman rank correlations for the chosen subsets of microstates (statistic RTS and NOV) and
for the original RK stages (statistic PRK and TRK).

Day-time variable RTS PRK NOV TRK

Pittsburgh Sleep Quality Index 0.174 0.106 (12)a 0.201 0.085 (3)a

Self-rating Question. (total) [17] 0.283 0.344 (41)b 0.274 0.178 (3)a

Self-rating Question. for Sleep Quality [17] 0.321 0.382 (42)b 0.315 0.265a (9)
Self-rating Question. for Awakening Quality [17] 0.164 0.165 (27) 0.152 0.050 (2)a

Self-rating Question. for Somatic Complaints [17] 0.302 0.191 (2)a 0.225 0.050 (1)a

Well-being Self Assessment Scale (evening) [19] 0.158 0.132 (21) 0.192 0.083 (2)a

Pulse Rate (evening) 0.204 0.136 (12)a 0.165 0.128 (16)
Pulse Rate 0.172  0.093 (8)a 0.167 0.121 (14)
Systolic Blood Pressure (evening) 0.206 0.108 (6)a 0.193 0.066 (2)a

Diastolic Blood Pressure (evening) 0.167 0.060 (2)a 0.182 0.143 (16)
Systolic Blood Pressure 0.216 0.113 (6)a 0.196 0.118 (7)a

Diastolic Blood Pressure 0.229 0.076 (2)a 0.233 0.140 (6)a

Visual Analogue Scale Test for Drive 0.233 0.149 (6)a 0.175 0.065 (0)a

Visual Analogue Scale Test for Mood 0.159 0.164 (25) 0.150 0.095 (13)
Visual Analogue Scale Test for Affectivity 0.135 0.123 (22) 0.167 0.108 (12)a

Visual Analogue Scale Test for Drowsiness 0.174 0.183 (32) 0.153 0.165 (28)
Alphabetical Cross-out Test (total score) [18] 0.157 0.104 (11)a 0.123 0.075 (14)
Alphabetical Cross-out Test (errors) [18] 0.231 0.092 (2)a 0.183 0.056 (0)a

Alphabetical Cross-out Test (variability) [18] 0.154 0.031 (2)a 0.150 0.064 (3)a

Alphabetical Cross-out Test (error-corr.) [18] 0.133 0.108 (21) 0.124 0.087 (16)
Alphabetical Cross-out Test (% errors) [18] 0.198 0.113 (11)a 0.161 0.045 (4)a

Well-being Self Assessment Scale [19] 0.154 0.153 (23) 0.175 0.128 (13)
Numerical Memory Test 0.223 0.100 (5)a 0.194 0.135 (16)
Fine Motor Activity Test (right hand) [18] 0.141 0.096 (15) 0.114 0.136 (31)
Fine Motor Activity Test (left hand) [18] 0.148 0.075 (11)a 0.121 0.162 (36)
Fine Motor Activity Test (total) [18] 0.150 0.082 (14) 0.107 0.121 (23)
a Significantly better RTS (NOV) over PRK (TRK).
b Significantly better PRK (TRK) over RTS (NOV).

was observed in the case of RTS, PRK, NOV or TRK statistics.
All correlations were carried out using the Spearman corre-
lation coefficient computed between the variables RTS, PRK,
NOV and TRK, on one hand, and variables defined in Table 1,
on the other.3

3.  Results

The results of correlating pairs of variables, as well as select-
ing the one with highest correlations, are summarized in
Fig. 1, depicting absolute correlation coefficients. Here, only
single microstates were considered. With the exception of
four cases the correlations for the PSM variables are always
significantly higher than for the RK variables. The strongest
exception is the case of s qua (Self-rating Questionnaire
for Sleep Quality; [17]), where PRK computed for the wake
stage shows a higher correlation (� = 0.36). Moderate corre-
lations between s qua and the RK sleep parameters were
also reported in studies by Saletu et al. [20], and a similar
connection between perceived sleep quality and sleep param-
eters was found by Keklund and Åkerstedt [21] and Kemp

et al. [22].

In the next step the superior performance of the PSM
was thoroughly tested using the method of a goal-oriented

3 For one of the seven sleep labs the values of diastolic blood
pressure and fine motor activity tests were outside the range of
values obtained from the other six labs. Therefore those test
results were not considered (27 subjects).
selection of combinations of microstates described in the pre-
vious sub-section. Table 1 summarizes the results obtained.
Considering 50 bootstrap runs, the second column of the table
shows the average correlations between RTS for the chosen
combination and sleep quality measures. Correlation values
obtained by considering PRK are depicted in the third column.
The number in parentheses gives the number of times the
correlations for PRK defined on a RK stage was equal or higher
in absolute value than the correlations for RTS defined on a
microstate combination. The letter (a) in Table 1, significantly
higher (  ̨ = 0.01) correlations for PSM variables (RTS, NOV),
whereas (b) significantly higher correlations for RK variables
(PRK, TRK). The latter is the case in only two cases, again for
s qua (subjective sleep quality) and the total subjective sleep
and awakening quality score.

An example of a whole night hypnogram and the RK pos-
teriors derived from (5) are depicted in Fig. 2. The figure shows
increased wake posteriors corresponding to the RK wake peri-
ods. The short transitions from S2 to S1 are visible as smaller
peaks. The SWS  posterior tends to increase during the SWS
sleep period. Decrease in the posterior peaks of the second
and third SWS  period in comparison to the first SWS  can
be observed. Finally, REM posteriors are increased during the
periods of REM defined by the RK rules.

The estimated priors p̂(z), the RK p̂R(c|z) and spindle p̂S(s|z)
probabilities are summarized in Table 2. The states are sorted

according to the value of the conditional RK probability
p̂R(wake|z). For instance, the microstates 2, 3, 6, 7 and 11 can
be considered as largely overlapping with S2, because their
fitted value p̂R(S2|z) is always larger than 0.8. Looking at the
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Fig. 1 – Absolute correlations between RTS, PRK and day time sleep quality variables of Table 1. Sleep quality variables on
x-axis are sorted following the order of Table 1. Dotted lines: Correlations considering PRK of five RK stages. Solid line:
Correlations considering RTS of sleep microstates determined by the PSM. For each sleep quality variable a single
m cted

s
t
w
c

icrostate with the maximum absolute correlation was sele

pindle probabilities p̂(s|z), it can be observed that in state 6

he probability of spindles presence is high (equal to 0.99),
hereas in state 3 this probability is much smaller (0.25). It

an be concluded that the five states together describe the S2

Table 2 – Parameters of a fitted probabilistic sleep model.

Microstate z 1 2 3 4 5

p̂(z) 0.04 0.05 0.08 0.02 0.
p̂R(wake|z) 0.00 0.00 0.00 0.00 0.
p̂R(S1|z) 0.00 0.00 0.00 0.00 0.
p̂R(S2|z) 0.18 0.95 0.85 0.46 0.
p̂R(SWS|z) 0.82 0.04 0.14 0.53 0.
p̂R(REM|z) 0.00 0.01 0.01 0.00 0.
p̂S(0|z) 0.00 0.00 0.75 0.46 0.
p̂S(1|z) 0.42 0.30 0.23 0.28 0.
p̂S(2|z) 0.39 0.58 0.02 0.15 0.
p̂S(3|z) 0.19 0.13 0.01 0.12 0.

Microstate z 11 12 13 14 15

p̂(z) 0.10 0.05 0.02 0.04 0.0
p̂R(wake|z) 0.01 0.03 0.03 0.09 0.0
p̂R(S1|z) 0.04 0.09 0.09 0.29 0.3
p̂R(S2|z) 0.85 0.65 0.52 0.50 0.2
p̂R(SWS|z) 0.02 0.00 0.01 0.03 0.0
p̂R(REM|z) 0.08 0.23 0.35 0.09 0.4
p̂S(0|z) 0.93 0.00 0.81 0.84 0.8
p̂S(1|z) 0.06 0.64 0.14 0.11 0.1
p̂S(2|z) 0.01 0.31 0.04 0.03 0.0
p̂S(3|z) 0.00 0.04 0.01 0.02 0.0
.

stage and that the spindle activity in each microstate is also

reflected. As another example, the microstate 8 can be seen
as part of the spindle-free REM stage. This state is partially
overlapping with S1 and S2.

 6 7 8 9 10

05 0.06 0.06 0.08 0.08 0.04
00 0.00 0.00 0.00 0.00 0.00
00 0.01 0.01 0.10 0.05 0.00
11 0.95 0.93 0.15 0.51 0.27
89 0.04 0.04 0.00 0.00 0.73
00 0.00 0.01 0.74 0.43 0.00
88 0.01 0.04 1.00 0.91 0.86
11 0.00 0.50 0.00 0.09 0.11
01 0.08 0.38 0.00 0.00 0.02
00 0.91 0.09 0.00 0.00 0.00

 16 17 18 19 20

7 0.00 0.05 0.03 0.04 0.04
9 0.48 0.60 0.70 0.85 0.96
0 0.06 0.27 0.15 0.13 0.03
0 0.30 0.03 0.10 0.02 0.00
0 0.15 0.00 0.00 0.00 0.00
2 0.01 0.10 0.05 0.01 0.01
7 0.87 0.98 0.11 0.92 0.93
2 0.06 0.02 0.59 0.07 0.07
0 0.05 0.00 0.26 0.01 0.00
0 0.02 0.00 0.04 0.00 0.00
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Fig. 2 – (a) Hypnogram and smoothed posteriors for (b)
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Fig. 4 – A transition from S2 to SWS  with arousals. (a)
Hypnogram. (b) Posterior for wake. (c) Smoothed posterior
wake, (c) SWS  and (d) REM.

Another interpretation of the fitted microstates can be
derived from the estimate of centers �z of each fitted Gaus-

sian p̂(x|z). Using the fact that a frequency spectrum can be
assigned to each AR model [23], spectra for all 20 centers of
microstates 1–20 were computed (Fig. 3). The figure shows the

Fig. 3 – The spectra assigned to the
for SWS.

spindle peak at 12–13 Hz for the microstate 6 or the alpha peak
at 9 Hz in the microstate 20. Microstates 1, 4 and 5 show a large

share of SWS  reflected by a higher amount of delta frequency.

Next, we  can also look at certain aspects of the PSM which
overcomes well-known limits of the RK staging. Fig. 4 shows

 centers of the 20 microstates.
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Fig. 5 – Posteriors for two combinations of microstates. (a)
Hypnogram. (b) Smoothed posterior for microstates 3, 11.
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art of the hypnogram of a subject switching from S2 to SWS,
hen to wake and finally to S2 again. Using Eq. (5) it can be
bserved that the SWS  posterior starts to increase at 2500 s.
t continues increasing with the onset of the SWS  phase from
oughly 0.25 to 0.4, which can be interpreted as a deepening
f SWS.  Furthermore, during the first S2 phase, 5 arousals are

ndicated by higher posteriors values for wake. These visible
eaks are not captured by the RK based sleep hypnogram (top
lot).

.  Discussion

 probabilistic approach to modeling the microstructure sleep
as presented (the PSM). The main idea consists in expressing

leep, besides using a finer temporal resolution, by posterior
robabilities which stand for the plausibility that the currently
bserved feature vectors derived from the EEG might have
een generated by certain micro-sleep-states. The microstates
hemselves are automatically generated during the fitting pro-
ess of the model and are not pre-defined as, for instance, the
K sleep stages. The meaning of a single microstate can be
erived from the attached Gaussian (as an indirect description
or the frequency distribution of the EEG segment) and from
he spindle and RK class probabilities assigned to the state.

Much  emphasis has been put on proving that the PSM
ndeed contains more  information than a sleep profile con-
isting of traditional sleep stages. While the main ideas
nderlying our model are not entirely new, for the first time
e  have statistically tested the model on a large dataset and

hus derived the proof-of-concept in favor of the model. The
ain means behind this statistical proof was the correlation

f variables derived from microstates with independent
utside measures of sleep quality.

While several correlations of the PSM were significantly
uperior to RK, their absolute values were moderate or small
Table 1). This is the case for all similar studies we are aware
f, including studies referenced in this paper. Therefore, it
emains an open question if considering the sleep process
ithout wider contextual information, for example, sleep
eprivation, prior to sleep workload, or sleep environment
actors, can lead to the extraction of more  informative sleep
arameters. It also remains an open question if the consid-
red measures of subjective sleep quality or day-time behavior
elated to sleep are adequate to reliably reflect important
hanges of sleep patterns, or a wider collection of tests and
easures should be considered and tested.
Based on the recorded polysomnography data, posterior

urves can be calculated. It was demonstrated that these
osteriors curves allow describing sleep in finer details; for
xample gradual transitions between and within the RK stages
re visible. Two exemplary statistics, RTS and NOV, derived
rom the posterior curves were constructed. After computing
osterior values of each microstate the states can be merged

nto combinations and their total RTS and NOV can be com-

uted. To answer the question, which microstates should be
ombined, we  applied an optimization process with the goal to
aximize correlations between the given statistic and a given

leep quality variable.
(c) Smoothed posterior for microstates 2, 6, 7.

A very powerful property of the PSM is the fact that the
posterior for a combination of microstates is the sum of
posteriors. This feature allows defining new sleep states or
sub-states by combining certain microstates. Using a larger
number of 20 microstates allows partitioning the sleep space
into fine details without losing the ability of re-combining
the microstates according to different goals. These goals can
be changed from application to application. For instance, the
already described microstates 2, 3, 6, 7 and 11 from Table 2
are strongly related to S2. Two sets of these microstates can
be defined (i) the spindle-rich S2R (combined states 2, 6 and 7)
and (ii) S2F with few spindles (states 3 and 11). In Fig. 5 the pos-
teriors of S2R and S2F are depicted. It can be observed that the
posteriors of S2F have different heights for different S2 stages
during the night. They seem to be higher if a SWS  phase fol-
lows. Analogously, S2R seems to have its peaks predominantly
at the beginning and end of the night.

We should mention that the validation presented in this
paper is only a first step toward demonstrating a potential
clinical use of probabilistic continuous sleep profiles. More
work needs to be done on exploring continuous sleep profiles
derived by mapping microstates to the main cornerstones of
sleep staging, on investigating the capability of the PSM of dis-
tinguishing pathological from normal sleep, and many  more
aspects. What has been achieved, though, is the important
proof-of-concept that further exploring a model like PSM can
be worthwhile.
In future work also emphasis will be given on the dynami-
cal aspects of the sleep. The dynamics can be either introduced
with the PSM itself or by defining statistics which make use
of periodicities in the observed posterior curves. The later

dx.doi.org/10.1016/j.cmpb.2012.05.009
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approach would resemble the concept of Cyclic Alternating
Patterns (CAP) [24]. The potential of this line of research is
also supported by the recent study of Moser et al. [25], Ferri
et al. [26], Svetnik et al. [27] showing an association between
the disruptions in CAP and subjective sleep quality.
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Appendix  A.  EM  algorithm

The appendix describes a variant of the EM algorithm for
fitting the PSM used in the paper. First, consider a simple
Gaussian mixture model [28]

p(x) =
K∑

k=1

�kN(x|�k, ˙k)

with prior probabilities �k = p(k) and Gaussian functions N(x|�k,
˙k) for k = 1, . . .,  K. Now, additionally to the vector x, consider
a Rechtschaffen and Kales class c ∈ {1, 2, 3, 4, 5} and a spin-
dle class s ∈ {0, 1, 2, 3}. Denote by Hkc the RK labels related
conditional probability pR(c|k) and similarly by Gks the spin-
dle class conditional probability pS(s|k), Then, the probabilistic
sleep model (PSM) defined in Eq. (3) can be written in the form

p(x, c, s) =
K∑

k=1

�kN(x|�k, ˙k)HkcGks

Define a K-dimensional binary random vector z in the fol-
lowing way: if the latent random variable has the value k, then
zk = 1 for this k and zk = 0 for the remaining indexes. With this
notation the following identities are defined

p(z) =
K∏

k=1

�zk
k

p(x|zk = 1) = N(x|�k, ˙k)
pR(c|zk = 1) = Hkc

pS(s|zk = 1) = Gks

Suppose now that we would like to fit a model to obser-
vations o1 = (x1, c1, s1), . . .,  oN = (xN, cN, sN). The E step tries to
calculate the expected values of znk given all observations o1,

. . .,  oN. First the likelihood for the complete data set is needed.
For now we  assume that zn are observable. By summarizing
all observed vectors xn into a matrix X, all observed RK classes
into a vector C, all spindle classes into a vector S and finally
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 961–972

all latent vectors zn into a matrix Z, the likelihood for the
complete data set can be written in the following form

p(X, C, S, Z|˙, �, �, H, G) =
N∏

n=1

K∏
k=1

�znk
k

[
N(xn|�k, ˙k)Hkcn

Gksn

]znk

where the short notation ˙, �, �, H, G for all occurring param-
eters was used.

The logarithm of the likelihood is then

ln p(X, C, S, Z|˙, �, �, H, G)

=
N∑

n=1

K∑
k=1

znk

{
ln �k + ln N(xn|�k, ˙k) + ln Hkcn

+ ln Gksn

}

which will be minimized during the M step with znk replaced
by its expectation. For the expectation we calculate

p(Z|X, C, S, ˙, �, �, H, G) = p(X, C, S, Z|˙, �, �, H, G)
p(X, C, S|˙, �, �, H, G)

Because the denominator depends on the observed data only
and not on Z

p(Z|X, C, S, ˙, �, �, H, G) ∝ p(X, C, S, Z|˙, �, �, H, G)

=
N∏

n=1

K∏
k=1

[
�kN(xn|�k, ˙k)Hkcn

Gksn

]znk

and therefore under the posterior distribution zn are indepen-
dent. To calculate the expectation of zn under the posterior
distribution, the so-called responsibility �(znk) of component
k for data point on needs to be computed

�(znk) = �kN(xn|�k, ˙k)Hkcn
Gksn∑K

j=1�jN(xn|�j, ˙j)Hjcn
Gjsn

The expected value of the complete-data log likelihood func-
tion is then given by

E[ln p(X, C, S, Z|˙, �, �, H, G)]

=
N∑

n=1

K∑
k=1

�(znk)
{

ln �k + ln N(xn|�k, ˙k) + ln Hkcn
+ ln Gksn

}

During the M step the parameters ˙, �, �, H and G are cho-
sen maximizing this expectation. Each of the terms of the sum
is independent from the other terms and can be maximized
separately. Using the notation Nk =

∑N

n=1�(znk) and adopting
the formulas for ˙, �, � from [28] we get

�new
k

= 1
Nk

N∑
n=1

�(znk)xn

N∑

˙new

k
= 1

Nk
n=1

�(znk)(xn − �new
k )(xn − �new

k )T

�new
k

= Nk

N

dx.doi.org/10.1016/j.cmpb.2012.05.009


i n b i

a

N

c
W

T

T

W
p

r

c o m p u t e r m e t h o d s a n d p r o g r a m s 

For the computation of the estimator Hkc define

�[kc] =
∑

n:cn=c

�(znk)

nd consider

N∑
n=1

K∑
k=1

�(znk) ln Hk,cn
=
∑

c

∑
n:cn=c

K∑
k=1

�(znk) ln Hk,c

=
∑

c

K∑
k=1

ln Hk,c

∑
n:cn=c

�(znk) =
∑

c

K∑
k=1

ln Hk,c�[kc]

ow the Lagrange function

L =
∑

c

K∑
k=1

ln Hk,c�[kc] + �1

(∑
c

H1,c − 1

)

+· · · + �K

(∑
c

HK,c − 1

)

an be defined and maximized with respect to the Hkc term.
e get

∂L

∂Hk,c
= �[kc]

Hk,c
+ �k = 0, ∀k, c

herefore

�[kc] = −�kHk,c, ∀k, c

Nk =
∑

c

�[kc] = −�k

∑
c

Hk,c = −�k, ∀k, c

he new estimators are

Hkc = �[kc]

Nk
, c = 1, . . . , 5

ith the same approach the new values of Gks can be com-
uted

Gks =
∑

n:sn=s
�(znk)

Nk
, s = 0, . . . , 3
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