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1 Introduction

The task of studying the properties of configurations of points embedded
in a metric space has long been a central task in pattern recognition, but
has acquired even greater importance after the recent introduction of kernel-
based learning methods. These methods work by virtually embedding general
types of data in a vector space, and then analyzing the properties of the
resulting data cloud. While a number of techniques for this task have been
developed in fields as diverse as multivariate statistics, neural networks, and
signal processing, many of them show an underlying unity. In this chapter
we describe a large class of pattern analysis methods based on the use of
generalized eigenproblems, which reduce to solving the equation Aw = λBw
with respect to w and λ.

The problems in this class range from finding a set of directions in the
data-embedding space containing the maximum amount of variance in the
data (principal components analysis), to finding a hyperplane that separates
two classes of data minimizing a certain cost function (Fisher discriminant),
or finding correlations between two different representations of the same data
(canonical correlation analysis). Also some important clustering algorithms
can be reduced to solving eigenproblems. The importance of this class of
algorithms derives from the facts that generalized eigenproblems provide an
efficient way to optimize an important family of cost functions, of the type
f(w) = w′Aw

w′Bw (known as a Rayleigh quotient); they can be studied with very
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simple linear algebra; and they can be solved or approximated efficiently using
a number of well-known techniques from computational algebra.

Their statistical behavior has also been studied to some extent (e.g. [24]
and [25]), allowing us to efficiently design regularization strategies in order to
reduce the risk of overfitting. However, methods limited to detecting linear
relations among vectors could hardly be considered to constitute state-of-the-
art technology, given the nature of the challenges presented by modern data
analysis. Therefore it is crucial that all such problems can be cast and solved
in a kernel-induced feature space; that is, they only require information about
inner products between data points. The entire toolbox of generalized eigen-
problems for pattern analysis can then be applied to detection of generalized
relations on a wide range of data types, such as sequences, text, images, and
so on.

In this chapter we will first review the general theory of eigenvalue prob-
lems, then we will give a brief review of kernel methods in general. Finally,
we will discuss a number of algorithms based in multivariate statistics: princi-
pal components analysis, partial least squares, canonical correlation analysis,
Fisher discriminant, and spectral clustering, where appropriate both in their
primal and in their dual form, leading to a version involving kernels.

1.1 Notation

All matrices are boldface uppercase. Vectors are boldface lowercase. Scalar
variables are lowercase. Sets and spaces are denoted with calligraphic letters.

With
(
a b · · · z )

, the matrix built by stacking the vectors a,b, . . . , z next
to each other is meant.

The symbols used are:

• The vector containing all ones is denoted by 1. The identity matrix is
denoted by I. The matrix or vector containing all zeros is denoted by 0.
Their dimensionality is clear from the context.

• x or xi, column vectors represent a vector in the X -space. When we have
n samples, the matrix X is built up as X =

(
x1 x2 · · · xn

)′.
• Similarly, y or yi are sample vectors from the Y-space. The matrix Y

containing samples y1 through yn is built up as Y =
(
y1 y2 · · · yn

)′.
• When Y is one-dimensional, a sample from this space is denoted by y or

yi, and the vector containing all samples is y =
(
y1 y2 · · · yn

)′.
• Unless stated differently, all data are assumed to be centered (have zero

mean) throughout this chapter. This means that 1′ ·X = 0′, 1′ ·Y = 0′,
or when Y is one-dimensional, 1′ · y = 0.

• KX and KY are the so-called kernel or Gram matrices corresponding to X
and Y. They are the inner product matrices KX = XX′ and KY = YY′.
When it is clear from the context which data the kernel is built from, we
just use K. When we want to stress the kernel is centered we use Kc.

• For centered data matrices X and Y, the matrices SXX = X′X, SXY =
X′Y, SYY = Y′Y, and SYX = SXY

′ are the scatter matrices.
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• α, αX, αY, αi, αX,i, and αY,i will be referred to as dual vectors and their
respective ith coordinates. When an index i is used as a subscript after a
boldface α, this refers to a dual vector indexed by i, and not to the ith
coordinate.

• w,wX,wY will be referred to as weight vectors. Their respective ith co-
ordinates are denoted by wi, wX,i, wY,i. When an index i is used as a
subscript after a boldface w, this refers to a weight vector indexed by i,
and not to the ith coordinate.

• The feature map from the input space to the feature space is denoted with
φ(xi).

• d, n, m, . . . are scalar integers; d is used for indicating dimensionality.

2 Linear Algebra

In this section we will review some basic properties of linear algebra that
will prove useful in this chapter. We use the standard linear algebra notation
in the beginning and translate the important results to the kernel methods
conventions afterwards. Extensive references for matrix analysis can be found
in [12] and [13].

2.1 Symmetric (Generalized) Eigenvalue Problems

Notation. In this introductory section, we will use a notation that is to be
distinguished from the notation in the remainder of the chapter:

• A ∈ Rn×m, a general matrix.
• M,N ∈ Rn×n, symmetric matrices. N is invertible.
• Λ,S ∈ Rn×n, diagonal matrices.
• U,V ∈ Rn×n : UU′ = I = U′U,VV′ = I = V′V, orthogonal matrices.
• W ∈ Rn×n, a matrix orthogonal in the metric defined by N: w′Nw = I.
• λ or λi, an eigenvalue.
• σ or σi, a singular value.

2.1.1 Variational Characterization

The optimization problems we are concerned with in this chapter are all ba-
sically of the form (we assume N is invertible)

max
w

w′Mw
w′Nw

.

This is an optimization of a Rayleigh quotient. One can see the norm of w
does not matter: scaling w does not change the value of the object function.
Thus, one can impose an additional scalar constraint on w and optimize the
object function without losing any solutions. This constraint is chosen to be
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w′Nw = 1. Then the optimization problem becomes a constrained optimiza-
tion problem of the form:

max
w

w′Mw s.t. w′Nw = 1,

or by using the Lagrangian L(w):

max
w

L(w) = max
w

w′Mw − λw′Nw.

Equating the first derivative to zero leads to

Mw = λNw. (1)

The optimal value reached by the object function is equal to the maximal
eigenvalue, the Lagrange multiplier λ. This is the symmetric generalized eigen-
value problem that will be studied here.

Note that the vector w with the scalar λ leading to the optimum of the
Rayleigh quotient is not the only solution of the generalized eigenvalue pro-
blem given by Eq. (1). There exist other eigenvector–eigenvalue pairs that do
not correspond to the optimum of the Rayleigh quotient. For any pair (w, λ)
that is a solution of Eq. (1), w is called a (generalized) eigenvector and λ is
called a (generalized) eigenvalue. In many cases several of these eigenvector–
eigenvalue pairs are of interest.

2.1.2 Symmetric Eigenvalue Problems

For the ordinary symmetric eigenvalue problem (where N = I):

Mw = λw.

Eigenvectors wi corresponding to different eigenvalues λi are orthogonal to
each other. Furthermore, the eigenvalues of symmetric matrices are real, and
a real eigenvector corresponds to them.

Proof. For λi 6= λj ,

Mwi = λiwi,

⇒ λi(w′
jwi) = w′

jMwi = w′
iM

′wj = w′
iMwj ,

= λj(w′
iwj),

⇒ w′
jwi = 0.

Thus, eigenvectors corresponding to different eigenvalues λi and λj are or-
thogonal. Furthermore, with ·∗ the adjoint operator:
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Mwi = λiwi and M = M′ = M∗ (M is real symmetric) ,

⇒ λ∗i w
′
iw

∗
i = (λiw∗

i
′wi)∗ = (w∗

i
′Mwi)∗ = w′

iM
∗w∗

i = w′
iM

′w∗
i ,

= λiw′
iw

∗
i ,

⇒ λi = λ∗i .

Therefore the eigenvalues of a real symmetric matrix are real. Then also the
eigenvectors are real up to a complex scalar (and can thus be made real by
scalar multiplication), since if they were not, we could take the real part and
the imaginary part separately, and both would be eigenvectors corresponding
to the same eigenvalue.

When eigenvalues are degenerate, that is, they are equal but correspond
to a different eigenvector, then these eigenvectors can be chosen to be or-
thogonal to each other. This follows from the fact that they are in a subspace
orthogonal to the space spanned by all eigenvectors corresponding to the other
eigenvalues. In this subspace an orthogonal basis can be found. The number
of eigenvalues and corresponding orthogonal eigenvectors of a real symmetric
matrix thus is equal to the dimensionality n of M.

If we normalize all eigenvectors wi to unit length and choose them to be
orthogonal to each other, they are said to form an orthonormal basis. For W
being the matrix built by stacking these normalized eigenvectors wi next to
each other, we have

WW′ = W′W = I,

that is, the matrix W is orthogonal.

Since then Mwi = wiλi for all i, we can state that

MW = WΛ,

where Λ contains the corresponding eigenvalues λi on its diagonal. Then,
taking into account that W−1 = W′, we can express the matrix M as:

M = WΛW′ =
∑

i

λiwiw′
i.

This is called the eigenvalue decomposition of the matrix M, also known as
the spectral decomposition of M.

2.1.3 Symmetric Generalized Eigenvalue Problems

In general, we will deal with generalized eigenvalue problems of the form

Mw = λNw.
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This could be solved as an ordinary but nonsymmetric eigenvalue problem
(by multiplying with N−1 on the left-hand side). We can also convert it to a
symmetric eigenvalue problem by defining v = N1/2w:

MN−1/2N1/2w = λN1/2N1/2w,

and thus by left multiplication with N−1/2:

(N−1/2MN−1/2)v = λv.

For this type of problem, we know that the different eigenvectors v can be
chosen to be orthogonal and of unit length, thus:

V′V = I = W′NW,

which means that the generalized eigenvectors wi of a symmetric eigenvalue
problem are orthogonal in the metric defined by N.

2.2 Singular Value Decompositions, Duality

The singular value decomposition of a general real matrix A is defined as

A =
(
U U0

) (
S 0
0 0

) (
V V0

)′ = USV′,

where S contains the singular values si in decreasing order (by convention)
on the diagonal, and dimensions of all blocks are compatible. The matrices(
U U0

)
and

(
V V0

)
are orthogonal matrices, respectively containing the

left and the right singular vectors as their columns. This decomposition can
be calculated for any real matrix.

One can see that multiplying A on the left with a column of U0 gives zero:
U′

0A = 0′. Therefore U0 is said to span the left null space of A. Similarly,
V0 is a basis for the right null space of A. On the other hand, U and V
respectively span the column and the row space of A.

Note that AA′ and A′A are symmetric, and their eigenvalue decomposi-
tions are:

AA′ = US2U′,

A′A = VS2V′.

Another important property of singular value decompositions is that the
nonzero singular values and corresponding singular vectors are the nonzero

eigenvalues and corresponding eigenvectors of the matrix
(

0 A
A′ 0

)
:

(
0 A
A′ 0

) (
ui

vi

)
= si

(
ui

vi

)
, (2)
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the solution of which leads to the singular value decomposition of A = USV′.

In a pattern recognition problem, the rows of the matrix A may consist of
different data vectors. Above, we used the standard linear algebra notation.
In pattern recognition, the matrix A will then correspond to X, the columns
of V to w being the weight vectors, and the columns of U to α, being the
dual vectors. Thus, in the notation we adopt in this chapter:

X′αi = siwi,

Xwi = siαi.

When the norm is not an issue, which is often the case, the factor si can be
omitted, so up to a scaling factor:

X′αi = wi, (3)
Xwi = αi.

The matrix X′X = SXX will be called a scatter matrix. Since the samples
making up the rows of X are assumed to have zero mean, it is proportional
to the finite sample covariance matrix CXX = 1

nSXX. On the other hand,
XX′ = KX is a Gram or kernel matrix . (Note that element (i, j) corresponds
to the inner product of samples xi and xj .) Thus, the weight vectors are the
eigenvectors of the scatter matrix, and the dual vectors are the eigenvectors of
the kernel matrix. Given the dual vectors, the weight vectors can be found by
multiplication with the data matrix X′, and vice versa. This type of relation
between primal and dual variables forms the basis of the duality and enables
the use of kernels.

3 Kernel Methods

Kernel methods (KMs) [7, 21, 23, 27, 29] are a relatively new family of algo-
rithms that presents a series of useful features for pattern analysis in data sets.
In recent years, their simplicity, versatility, and efficiency have made them a
standard tool for practitioners, and a fundamental topic in many data anal-
ysis courses. We will outline some of their important features, referring the
interested reader to more detailed articles and books for a deeper discussion
(see, for example, [23] and references therein).

KMs combine the simplicity and computational efficiency of linear algo-
rithms, such as the perceptron algorithm or ridge regression, with the flex-
ibility of nonlinear systems, such as, for example, neural networks, and the
rigor of statistical approaches, such as regularization methods in multivari-
ate statistics. As a result of the special way they represent functions, these
algorithms typically reduce the learning step to a simple optimization prob-
lem that can always be solved in polynomial time, avoiding the problem of
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local minima typical of neural networks, decision trees, and other nonlinear
approaches.

Their foundation in the principles of statistical learning theory makes them
remarkably resistant to overfitting especially in regimes where other methods
are affected by the ‘curse of dimensionality’. Another important feature for
applications is that they can naturally accept input data that are not in the
form of vectors, such as, for example, strings, trees, and images. Their char-
acteristically modular design makes them amenable to theoretical analysis,
but also makes them well suited to a software engineering approach in which
a general-purpose learning module is combined with a data-specific ‘kernel
function’ that provides the interface with the data and incorporates domain
knowledge.

Many learning modules can be used, depending on whether the task is one
of classification, regression, clustering, novelty detection, ranking, and so on.
At the same time, many kernel functions have been designed, for example, for
protein sequences, for text and hypertext documents, for images, time series,
etc. As a result, this method can be used for dealing with rather exotic tasks,
such as ranking strings, or clustering graphs, in addition to such classical tasks
as classifying vectors. In the remainder of this section, we will briefly describe
theory behind kernel methods, followed by a brief example of how this can be
used in practice: kernelizing least squares regression and ridge regression.

3.1 Theory

Kernel-based learning algorithms work by embedding the data into a Hilbert
space and searching for linear relations in such space. The embedding is per-
formed implicitly, that is, by specifying the inner product between each pair
of points, rather than by giving their coordinates explicitly. This approach
has several advantages, the most important being the observation that often
the inner product in the embedding space can be computed much more easily
than the coordinates of the points themselves.

Given an input set X and an embedding vector space F (often called the
feature space), we consider a map φ : X → F (often called the feature map).
The function that, given two points xi ∈ X and xj ∈ X , returns the inner
product between their images in the space F is known as kernel function.

Definition 1. A kernel is a function k, such that for all x, z ∈ X , k(x, z) =
〈φ(x), φ(z)〉, where φ is a mapping from X to a Hilbert space F , and 〈·, ·〉
denotes the inner product.

We also consider the matrix Kij = k(xi,xj), called the kernel matrix or
the Gram matrix . Thanks to the fact it is built from inner products it is always
a symmetric, positive semidefinite matrix, and since it specifies the inner
products between all pairs of points, it completely determines the relative
positions between those points in the embedding space. For example, given
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such information, it is trivial to recover all the pairwise distances between
them.1

The solutions sought by kernel-based algorithms are linear functions in the
feature space:

f(x) = w′
φ(x),

for some weight vector w. The kernel can be exploited whenever the weight
vector can be expressed as a linear combination of the training points, w =∑n

i=1 αiφ(xi), implying that we can express f as follows:

f(x) =
n∑

i=1

αik(xi,x).

This will be the case for any of the algorithms considered in this chapter.

3.2 Example: Least Squares and Ridge Regression

We consider the well-known problem of least squares regression to start with
and derive a kernelized version for it. Consider the vector y ∈ Rn and the data
points X ∈ Rn×d. We want to find the weight vector w ∈ Rd that minimizes
‖y −Xw‖2. Taking the gradient of this cost function with respect to w and
equating to zero leads to:

∇w‖y −Xw‖2 = ∇w(y′y + w′X′Xw − 2w′X′y),
= 2X′Xw − 2X′y,

= 0,

⇒ w = (X′X)−1X′y.

This is the well-known least squares solution.
However, least squares is highly sensitive to overfitting. Especially when X

lives in a high-dimensional (feature) space, care needs to be taken (ultimately,
when the dimensionality d > n, regression can always be carried out exactly,
which means that any noise sequence could be fit by the model). In order to
avoid overfitting, a standard approach is to reduce the capacity of the learner,
or the effective number of degrees of freedom, by imposing a prior on the
solution, thus introducing a bias. In the case of regression, for example, one
usually prefers a weight vector with small norm. This is taken into account
by introducing an additional term γ‖w‖2 in the cost function, with γ the
regularization parameter. Minimizing leads to the ridge regression estimate:
1 Notice that we do not really need X to be a vector space; in fact, X can be a

generic finite set. This is because we are guaranteed that the data are implicitly
mapped to some Hilbert space by simply checking that the kernel matrix K
satisfies the conditions above.
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∇w

[‖y −Xw‖2 + γ‖w‖2] = ∇w [(y′y + w′X′Xw − 2w′X′y) + γ(w′w)] ,
= 2(X′X + γI)w − 2X′y,

= 0,

⇒ w = (X′X + γI)−1X′y.

To evaluate the regression function in a new test point, it can simply be
projected on the weight vector:

ytest = x′testw.

So far we have discussed the primal version of the ridge regression method.
The dual version can be derived by noting that the minimum norm weight
vector will always be in the span of the data X. This can be seen by replacing
(X′X + γI)−1 with (VΛV′ + γI)−1 = (V(Λ + γI)V′)−1 = V(Λ + γI)−1V′,
where the columns of V are the right singular vectors of X and are thus a basis
for the row space of X. Thus the weight vector w = V

[
(Λ + γI)−1V′X′y

]
lies in the column space of V, or equivalently in the row space of X, and can
thus be expressed as w = X′α (cf. Eq. (3)). Here α ∈ Rn is called the dual
vector. Plugging this into the equations leads to:

∇α
[‖y −XX′α‖2 + γ‖X′α‖2] = 2(XX′XX′)α− 2XX′y + 2γXX′α,

= 2(K2 + γK)α− 2Ky,

= 0,

⇒ K(K + γI)α = Ky. (4)

In the second step, XX′, which is the matrix containing the inner products
between any two points as its elements, is replaced by the kernel matrix K.
Since the inner products in K can be inner products in a feature space, they
can in fact be a nonlinear function of the data points, namely the kernel
function. In this way, nonlinearities can be dealt with in a very natural way.
This is the essence of the ‘kernel trick’. A general solution for Eq. (4) is given
by:

α = (K + γI)−1y + α0,

where α0 is any vector in the null space of K: X′α0 = Kα0 = 0.
The projection of a test point xtest onto the weight vector w = X′α =

X′ [(K + γI)−1y + α0

]
= X′(K + γI)−1y, can be written as ytest = x′testX

′α
(as one can see, the actual value of α0 does not matter). Written in terms of
kernel evaluations, this becomes:

ytest =
n∑

i=1

αik(xi,xtest).

This is indeed the standard form.
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3.3 Kernels in This Chapter

In this chapter, we will aim at deriving primal and dual versions of spectral
algorithms in pattern recognition. Whereas the primal formulation is usually
the standard form in which algorithms are known, the dual form is formulated
in terms of inner products only.2 This is important, since then the kernel
trick can be used in any algorithm where such a dual version can be derived,
very much in the same way as shown in the example above: by replacing the
matrix containing inner products with the kernel matrix. The inner products
are considered to be carried out implicitly between nonlinear mappings of the
points in a feature space.

As mentioned before, we will assume all data are centered. In primal
space, this centering is a trivial operation, as it is done by simply sub-
tracting the mean of each of the coordinates (n is the number of samples):
Xc =

(
X− 11′

n X
)
. However, centering in feature space deserves some atten-

tion since we do not compute the feature vectors explicitly, but only the inner
products between them. Thus we have to compute the centered kernel matrix
based on the uncentered kernel matrix.

For an uncentered K corresponding to uncentered X, the centered ver-
sion Kc can be computed as the product of the centered matrices Xc =(
X− 11′

n X
)
, where 1 ∈ Rn is the column vector containing n ones:

Kc =
(
X− 11′

n
X

)(
X− 11′

n
X

)′

= K− 11′

n
K−K

11′

n
+

11′

n
K

11′

n
. (5)

In this chapter, unless stated otherwise, we assume all kernel matrices are cen-
tered as such. Therefore, the subscript c will be omitted for brevity, wherever
this does not cause confusion.

Similarly, a test sample xtest should be centered accordingly. Let ktest =
[k(xtest,xi)]i=1:n be the vector containing the kernel evaluations of xtest with
all n training samples xi. Then again, we can do the centering implicitly: the
properly centered version (in correspondence with the centering of Eq. (5)) of
this vector can be shown to be

ktest,c = ktest −K
1
n
− 11′

n
ktest +

11′

n
K

1
n

.

In this chapter we assume all test samples are already centered in this way
as well. Again, the subscript c will be omitted wherever this does not cause
confusion.
2 In many if not all practical cases, the dual can be motivated using an optimization

perspective. The reader is referred to [27] for an in-depth treatment.
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4 Dimensionality Reduction: PCA, (R)CCA, PLS

The general philosophy that motivates dimensionality reduction techniques
is the fact that real-life data contain redundancies and noise. Dimensionality
reduction is often a good way to deal with this: by using a low-dimensional ap-
proximate representation, noise can be suppressed and redundancies removed.
The data are replaced by a summary that still captures as much information
as possible. All methods described in this section can be useful as a prepro-
cessing step for other algorithms like clustering, classification, regression, and
so on.

We will discuss various ways to perform dimensionality reduction. They
all share the property that they rely on inner products and on eigenproblems.
This has as a consequence that they can easily be made nonlinear using the
kernel trick, and that they are efficiently solved. The difference between them
lies in the cost function they optimize.

Therefore, each of the subsections will be structured as follows: first the
different cost functions leading to the algorithm are described, subsequently
the primal is derived and some properties are given, and finally the dual
formulation is presented. For a previous treatment of these algorithms in their
primal version, we refer to [6].

4.1 PCA

4.1.1 Cost Function

The motivation for performing principal component analysis (PCA) [16] is
often the assumption that directions of high variance will contain more in-
formation than directions of low variance. The rationale behind this could be
that the noise can be assumed to be uniformly spread. Thus, directions of
high variance will have a higher signal-to-noise ratio. Mathematically:

w = argmax‖w‖=1w
′X′(w′X′)′,

= argmax‖w‖=1w
′X′Xw,

= argmax‖w‖=1w
′SXXw. (6)

Or, for w not normalized this can be written as:

w = argmaxw

w′SXXw
w′w

.

The solution of Eq. (6) is also equivalent to minimizing the 2-norm of
the residuals. This can be seen by projecting all samples X on the subspace
orthogonal to w (by left multiplication with (I −ww′)), and computing the
Frobenius norm:
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w = argmin‖w‖=1‖X(I−ww′)‖2F,

= argmin‖w‖=1trace ([X(I−ww′)]′[X(I−ww′)]) ,

= argmin‖w‖=1trace (X′X + ww′X′Xww′ − 2X′Xww′) ,

= argmin‖w‖=1trace(SXX) + ‖w‖2w′SXXw − 2w′SXXw,

= argmin‖w‖=1 −w′SXXw.

4.1.2 Primal

Differentiating the Lagrangian L(w, λ) = w′SXXw− λw′w corresponding to
Eq. (6) with respect to w and equating to zero leads to

∇wL(w, λ) = ∇w(w′SXXw − λw′w) = 0,

⇔ SXXw = λw.

This is a symmetric eigenvalue problem as presented in Sect. 2. Such an eigen-
value problem has d eigenvectors. All are called principal directions, corre-
sponding to their variance λ.

Properties

• All principal directions are orthogonal to each other.
• The principal directions can all be obtained by optimizing the same cost

function, where the above property is explicitly imposed.
• The projections of the data onto different principal directions are uncor-

related : (Xwi)′Xwj = 0 for i 6= j. Note that one could as well say the
projections are orthogonal. This is equivalent, but we will use the notion
of correlation when we are talking about projections of data onto a weight
vector. Because of this property of PCA, it is sometimes called linear
decorrelation.

• The PCA solution is equivalent to, and can thus be obtained by computing,
the singular value decomposition of X.

4.1.3 Dual

To derive the dual, we use the key fact that w will always be a linear combi-
nation of the columns of X′ (to see this, note that w = 1

λSXXw = X′Xw
λ ).

We can thus replace w with X′α, where α are the dual variables. The dual
problem is then:

SXXX′α = λX′α,

⇒ XSXXX′α = λXX′α,

⇒ K2
Xα = λKXα. (7)
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When KX has full rank, we can multiply Eq. (7) by K−1
X on the left-hand

side, leading to:

KXα = λα. (8)

On the other hand, when KX is rank deficient, a solution for Eq. (7) is not
always a solution for Eq. (8) anymore (however, the converse is still true).
Then for α0 lying in the null space of KX, and α a solution of Eq. (8) (and
thus also of Eq. (7)), also α + α0 is a solution of Eq. (7) but generally not
of Eq. (8). But, since KXα0 = 0 and thus X′α0 = 0, the component α0 will
have no effect on w = X′(α + α0) = X′α anyway, and we can ignore the null
space of KX by simply solving Eq. (8) also in the case KX is rank deficient.

Since KX is a symmetric matrix, the dual eigenvectors will be orthogonal
to each other. The projections of the training samples onto the weight vector
w are Xw = XX′α = λα. Thus, the vector α is proportional with (and thus
up to a normalization equal to) the projections of the training samples onto
this weight vector. The fact that different dual vectors are orthogonal is thus
equivalent to the observation that the projections of the data onto different
weight vectors is uncorrelated.

Projection of a test point onto the PCA direction found can be carried out
as

ytest =
n∑

i=1

αik(xi,xtest).

4.2 Canonical Correlation Analysis (CCA) and Regularized CCA

While PCA deals with only one data space X where it identifies directions of
high variance, canonical correlation analysis (CCA, first introduced in [15])
proposes a way for dimensionality reduction by taking into account relations
between samples coming from two spaces X and Y. The assumption is that
the data points coming from these two spaces contain some joint information
that is reflected in correlations between them. Directions along which this
correlation is high are thus assumed to be relevant directions when these
relations are to be captured.

Again a primal and a dual form are available. The dual form makes it
possible to capture nonlinear correlations as well, thanks to the kernel trick
[1, 3, 11].

When data are scarce as compared to the dimensionality of the problem,
it is important to regularize the problem in order to avoid overfitting. This is
provided in the regularized CCA (RCCA) algorithm.

4.2.1 A Small Example

To make things more concrete, consider the following example described in
[31]. Suppose we have two text corpora, one containing English texts, and an-
other one containing the same texts but translated in French. The text corpora
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can be represented by the matrices X and Y containing vectors that are the
bag of words representations of the texts as its rows. Now, since we know that
the same basic semantic information must be present in both the English text
and the French translation, we must be able to extract some information from
every row of X that is similar to information extracted from the rows of Y. If
we do this in a linear way, this would mean that XwX and YwY are similar
in a way, for some wX and wX representing a certain semantic meaning. This
could be: XwX and YwY are correlated, thus motivating the cost function
introduced below. In [31], it is pointed out that many of the wX–wX pairs
found can indeed be related to an intuitively satisfying semantic meaning.
Other examples are available in literature, notably in bioinformatics [30, 35].

4.2.2 Cost Function

We thus want to maximize the correlation between a projection XwX of X
and a projection YwY of Y. Or, another geometrical interpretation is: find
directions XwX,YwY in the column space of X and Y with a minimal angle
between each other (we will use the notation SXY = X′Y, the cross-scatter
matrix):

{wX,wY} = argmaxwX,wY
cos ( 6 (XwX,YwY)) ,

= argmaxwX,wY

(XwX)′(YwY)√
(XwX)′(XwX)

√
(YwY)′(YwY)

,

= argmaxwX,wY

w′
XSXYwY√

w′
XSXXwX

√
w′

YSYYwY

.

Since the norm of the weight vectors does not matter, we can maximize
correlation along the weight vectors, or ‘fit’ subject to constraints fixing the
value of these weight vectors:

{wX,wY} = argmaxwX,wY
w′

XSXYwY

s.t. ‖XwX‖2 = w′
XSXXwX = 1, ‖YwY‖2 = w′

YSYYwY = 1.

This is equivalent to the minimization of a ‘misfit’ subject to these con-
straints:

{wX,wY} = argminwX,wY
‖XwX −YwY‖2

s.t. ‖XwX‖2 = 1, ‖YwY‖2 = 1.

4.2.3 Primal

We solve the second formulation of the problem. Differentiating the La-
grangian L(wX ,wY, λX, λY) = w′

XSXYwY−λXw′
XSXXwX−λYw′

YSYYwY

with respect to wX and wY and equating to 0, gives
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{ ∂
∂wX

L(wX,wY, λX, λY) = 0,
∂

∂wY
L(wX,wY, λX, λY) = 0,

⇒
{

SXYwY = λXSXXwX,
SYXwX = λYSYYwY.

Now, since from this

λXw′
XSXXwX = w′

XSXYwY = w′
YSYXwX = λYw′

YSYYwY,

and since w′
XSXXwX = w′

YSYYwY = 1, we find that λX = λY = λ, and
thus

{
SXYwY = λSXXwX,
SYXwX = λSYYwY.

(9)

Or, stated in another way as a generalized eigenvalue problem,
(

0 SXY

SYX 0

)(
wX

wY

)
= λ

(
SXX 0
0 SYY

)(
wX

wY

)
. (10)

This generalized eigenvalue problem has 2d eigenvalues. But, for each positive

eigenvalue λ and corresponding eigenvector
(

wX

wY

)
, −λ is an eigenvalue too

with corresponding eigenvector
(

wX

−wY

)
. Thus, we get all the information by

only looking at the d positive eigenvalues. The largest one with its eigenvector
corresponds to the optimum of the cost function described earlier. The weight
vectors making up the other eigenvectors will be referred to as other canonical
directions, corresponding to a smaller canonical correlation quantized by their
corresponding eigenvalue.

Properties

• CCA not only finds pairs of directions that capture maximal correlations
between each other. Projections onto canonical directions corresponding
to a different canonical correlation are uncorrelated :

λiw′
Y,j(SYYwY,i) = w′

Y,j(SYXwX,i),
= w′

X,i(SXYwY,j),
= λjw′

X,i(SXXwX,j),
= λjw′

X,j(SXXwX,i).

And similarly,

λiw′
X,j(SXXwX,i) = λjw′

Y,j(SYYwY,i).

So for λi 6= λj , the projection of Y onto wY,j is uncorrelated with the
projection of X onto wX,i: w′

Y,jSYXwX,i = 0. Similarly, w′
X,jSXXwX,i =
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0, and w′
Y,jSYYwY,i = 0. Another way to state this is to say that wX,i

is orthogonal to wX,j in the metric defined by SXX; similarly, wY,i is
orthogonal to wY,j in the metric defined by SYY.

• All canonical directions can be captured by a constrained optimization
problem in which the above property is explicitly imposed:

{wX,i,wY,i} = argmaxwX,i,wY,i
w′

X,iSXYwY,i

s.t. ‖XwX,i‖ = w′
X,iSXXwX,i = 1

‖YwY,i‖ = w′
Y,iSYYwY,i = 1

and for j < i :
w′

X,jSXXwX,i = 0,

w′
Y,jSYYwY,i = 0.

• The CCA problem can be reformulated as an ordinary eigenvalue problem:
(

0 SXX
−1SXY

SYY
−1SYX 0

)(
wX

wY

)
= λ

(
wX

wY

)
.

This eigenvalue problem can be made symmetric by introducing vX =
SXX

1/2wX and vY = SYY
1/2wY:

(
0 SXX

−1/2SXYSYY
−1/2

SYY
−1/2SYXSXX

−1/2 0

)(
vX

vY

)
= λ

(
vX

vY

)
.

Note that this eigenvalue problem is of the form of Eq. (2), so here vX

and vY are the left and right singular vectors of SXX
−1/2SXYSYY

−1/2.
The weight vectors can be retrieved as wX = SXX

−1/2vX and wY =
SYY

−1/2vY.
By the orthogonality of the singular vectors, we can derive in an alter-
native way that projections onto noncorresponding canonical directions
are uncorrelated: 0 = v′X,ivX,j = w′

X,iSXXwX,j , and 0 = v′Y,ivY,j =
w′

Y,iSYYwY,j . Also, we find that 0 = v′X,iSXX
−1/2SXYSYY

−1/2vY,j =
w′

X,iSXYwY,j .
• As a last remark, we note that CCA where one of both data spaces is

one-dimensional is equivalent to least squares regression (LSR).

4.2.4 Dual

To derive the dual, again note that the (minimum norm3) wX and wY will lie
in the column space of X and Y, respectively (thus, analogously to Eq. (3),
3 The motivation for taking the minimum norm solution is as follows: first of all,

we need to make a choice in cases where there is an indeterminacy as is when
the rows of X and/or Y do not span the whole space. And a component of the
weight vectors orthogonal to the data would never contribute to the correlation of
a projection of the data onto this weight vector anyway; the projection onto this
orthogonal direction would be zero. We do not get any information concerning
the orthogonal subspace, and thus do not want w to make any unmotivated
predictions on this. In this chapter we always look for minimum norm solutions.
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wX = X′αX and wY = Y′αY; see also [3] for a more detailed explanation).
Thus we can write

(
0 SXY

SYX 0

)(
X′αX

Y′αY

)
= λ

(
SXX 0
0 SYY

) (
X′αX

Y′αY

)

⇓ multiplying left with
(

X 0
0 Y

)

(
0 XSXYY′

YSYXX′ 0

)(
αX

αY

)
= λ

(
XSXXX′ 0

0 YSYYY′

)(
αX

αY

)

⇓(
0 KXKY

KYKX 0

)(
αX

αY

)
= λ

(
K2

X 0
0 K2

Y

)(
αX

αY

)
.

Projections of test points xtest and ytest onto the CCA directions corre-
sponding to αX and αY can then be carried out as

n∑

i=1

αX,ik(xi,xtest), and
n∑

i=1

αY,ik(yi,ytest). (11)

4.2.5 Regularization

Primal problem

Regularization is often necessary in doing CCA for the following reason. The
scatter matrices SXX and SYY are proportional to finite sample estimates
of the covariance matrices. This generally leads to poor performance in case
of small eigenvalues of these covariances. Remember the generalized eigen-
value problem is (theoretically) equivalent with a standard eigenvalue problem
where the right-hand side matrix containing the scatter matrices is inverted.
Any fluctuation of the smallest eigenvalue will thus be blown up in the inverse.
To counteract this effect, one often adds a diagonal to the scatter matrices, or
equivalently to each of their eigenvalues [3]. In this way, a bias is introduced,
but it is hoped that for a certain bias, the total variance will be lower than
the case when no bias is present.

An equivalent way to view this is, as presented above in the ridge regression
derivation, by interpreting the regularization as a reduction of the effective
number of degrees of freedom. Generalization will be more likely to be good.

The primal regularized problem is thus
(

0 SXY

SYX 0

) (
wX

wY

)
= λ

(
SXX + γI 0

0 SYY + γI

)(
wX

wY

)
.

Intuitively, this type of regularization boils down to trusting correlations along
high-variance directions more than along low-variance directions. Or, equiva-
lently, it corresponds to a modified optimization problem where the constraints
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contain an additional term constraining the norm of wX and wY, similarly
to the ridge regression cost function.

Note that RCCA with one of both spaces one-dimensional is equivalent to
ridge regression (RR).

Dual problem

The dual of this generalized eigenvalue problem can be derived in the same
way as the unregularized problem, leading to:

(
0 KXKY

KYKX 0

) (
αX

αY

)
= λ

(
K2

X + γKX 0
0 K2

Y + γKY

)(
αX

αY

)
. (12)

In the dual case, the need for regularization is often even stronger than in the
primal case. This is because the feature space is often infinite-dimensional, so
that the freedom to find correlations is much too high. All correlations would
be equal to 1, which means no generalization is possible at all. Penalizing a
large weight vector as above thus makes sense to improve generalization.

When both the kernels have full rank, left-multiplication on both sides of

Eq. (12) with
(

K−1
X 0
0 K−1

Y

)
reveals that this generalized eigenvalue problem

is equivalent with
(

0 KY

KX 0

)(
αX

αY

)
= λ

(
KX + γI 0

0 KY + γI

)(
αX

αY

)
. (13)

Kernel matrices are often rank deficient, however (e.g. when they are cen-
tered). In that case the solutions of Eq. (13) are still solutions for Eq. (12), but
the converse is no longer always true. The reason is that for any generalized

eigenvector
(

αX

αY

)
of Eq. (13) and thus of Eq. (12),

(
αX + αX0

αY + αY0

)
, where αX0

and αY0 are arbitrary vectors lying respectively in the null spaces of KX and
KY, is also an eigenvector with the same eigenvalue of Eq. (12) but generally
not of Eq. (13). However, similarly as in the ridge regression derivation, it can
be seen that these components αX0 and αY0 play no role in the calculation
of Eq. (11). This is because the weight vectors wX = X′(αX + αX0) = X′αX

and wY = Y′(αY + αY0) = Y′αY are unaffected by the components in the
null spaces of KX and KY. Therefore, we can choose to solve either Eq. (12)
or Eq. (13).

4.3 Partial Least Squares

Partial least squares (PLS, introduced in [33, 34]; see also [14] for a good
review) can be interpreted in two ways. The first PLS component is the maxi-
mally regularized version of the first CCA component (the case where γ →∞,
after rescaling the eigenvalues by multiplying them with γ). Another view is
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as a covariance maximizer instead of a correlation maximizer, this again for
the first PLS component. Whereas all PLS formulations compute the first
component in the same way, there is no one way to compute the other compo-
nents. We will present two variants: so-called EZ-PLS, which consists of only
one eigenvalue decomposition (or a singular value decomposition) and which
is used mainly for exploratory purposes (similar to CCA), and regression-PLS
which is a more involved version that is most widely used in (multivariate)
regression applications.

Because of the iterative way PLS components are computed in, and be-
cause of the fact that there exist several variants of PLS, the discussion is
somewhat more involved. We will first give a general discussion on the cost
function optimized in all PLS formulations, followed by the eigenproblem op-
timizing this cost function. Next, we will shortly go into some computational
aspects. Finally, we will show the particularities of the two PLS formulations
EZ-PLS and regression-PLS, followed by a discussion of the regression step
in regression-PLS. Again, a primal and a dual (see [19] where this was first
derived) formulation will be provided.

4.3.1 Cost Function

Maximize the sample covariance4 between a projection of X and a projection
of Y:

{wX,wY} = argmaxwX,wY

(XwX)′(YwY)√
w′

XwX

√
w′

YwY

,

= argmaxwX,wY

w′
XSXYwY√

w′
XwX

√
w′

YwY

.

This is equivalent to maximizing the sample covariance, or the ‘fit’ subject
to constraints:

{wX,wY} = argmaxwX,wY
w′

XSXYwY

s.t. ‖wX‖2 = w′
XwX = 1, ‖wY‖2 = w′

YwY = 1,

and equivalent to minimizing the misfit subject to these constraints:

{wX,wY} = argminwX,wY
‖XwX −YwY‖2

s.t. ‖wX‖2 = 1, ‖wY‖2 = 1.

4.3.2 Primal

We solve the second formulation of the problem. Differentiating the La-
grangian L(wX,wY, λX, λY) = w′

XSXYwY − λXw′
XwX − λYw′

YwY with
respect to wX and wY and equating to 0 gives
4 Note the difference between CCA where correlation was maximized.
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{ ∂
∂wX

L(wX,wY, λX, λY) = 0,
∂

∂wY
L(wX,wY, λX, λY) = 0,

⇒
{

SXYwY = λXwX.
SYXwX = λYwY.

Since from this

λXw′
XwX = w′

XSXYwY = w′
YSYXwX = λYw′

YwY,

and since w′
XwX = w′

YwY = 1, we find that λX = λY = λ. Thus
{

SXYwY = λwX,
SYXwX = λwY.

(14)

Or, stated in another way as an eigenvalue problem,
(

0 SXY

SYX 0

)(
wX

wY

)
= λ

(
wX

wY

)
. (15)

This eigenvalue problem has d eigenvalues, corresponding to a covariance be-
tween projections onto wX and wY. The largest one with its eigenvector
corresponds to the optimum of the cost function described earlier.

Note that Eq. (15) is of the form of Eq. (2). Thus the EZ-PLS problem
can be solved by calculating the singular value decomposition of SXY.

4.3.3 Dual

The dual problem can easily be found by using Eq. (3):
(

0 KXKY

KYKX 0

)(
αX

αY

)
= λ

(
KX 0
0 KY

)(
αX

αY

)
,

which includes all solutions of
(

0 KY

KX 0

)(
αX

αY

)
= λ

(
αX

αY

)
(16)

as its solutions as well. Similarly, as in CCA this is the formulation of the dual
problem that is solved, since it does not suffer from indeterminacies.

Projections of test points xtest and ytest onto the PLS directions corre-
sponding to αX and αY can then be computed as

n∑

i=1

αX,ik(xi,xtest), and
n∑

i=1

αY,ik(yi,ytest).

It is important to note that the first component corresponds to maximally
regularized RCCA. Taking more than one component lessens this regulariza-
tion in an alternative way in comparison to RCCA. This will be the subject
of the remainder of this section on PLS.
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4.3.4 Nonlinear Iterative Partial Least Squares and Primal–Dual
Symmetry in PLS

A straightforward way to solve for the largest eigenvector of Eq. (15) could be
by using the power method. However, thanks to the structure of the eigenvalue
problems at hand, it can be solved by using the so-called nonlinear iterative
partial least squares (NIPALS) method [33]. Note that, from Eqs. (15) and
(16):

• YY′XX′αX = λ2αX.
• X′YY′XwX = λ2wX.
• XX′YY′αY = λ2αY.
• Y′XX′YwY = λ2wY.

Thus it follows that both the primal and the dual eigenvalue problem are
actually solved at the same time, using the following ‘power’ method:

0. Fix initial value wY, normalize. Then iterate over steps 1–4.
1. αX = YwY.
2. wX = X′αX, normalize wX to unit length.
3. αY = XwX.
4. wY = Y′αY, normalize wY to unit length.

After convergence, the normalizations carried out in steps 2 and 4 both
amount to a division by λ; then wX = 1

λX′αX and wY = 1
λY′αY.

In case the feature vectors X are only implicitly determined by a kernel
function, steps 2 and 3 must be combined in one step:

2,3. αY = KXαX, normalize.

It can be seen that each of these weight vectors or dual vectors converge to
the eigenvector of the above four eigenvalue problems (combining four steps
following each other gives the power method for one of these four eigenvalue
problems). Since these are equivalent with Eqs. (15) and (16), they converge
to the PLS weight vectors and dual vectors.

In this way, we can solve efficiently for the largest singular value and sin-
gular vectors. Only this one component is not enough to solve most practical
problems, however. We discuss two ways to extract more information present
in the data: what we call EZ-PLS and regression-PLS. For both methods first
the primal versions will be discussed, then afterwards the dual.

4.3.5 EZ-PLS

Primal

In EZ-PLS, the other PLS directions are the other eigenvectors corresponding
to a different covariance (eigenvalue) λ. This can be accomplished by using
an iterative deflation scheme:
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1. Initialize: SXY
0 ← SXY.

2. Compute the largest singular value of SXY
i with NIPALS. This gives the

ith PLS component. Normalize so that ‖wX,i‖ = ‖wY,i‖ = 1.
3. Deflate the scatter matrices:

SXY
i+1 ← SXY

i − λiwX,iw′
Y,i.

The rank of SXY
i+1 is 1 less than the rank of SXY

i.
4. When the number of desired components (necessarily lower than the rank

of SXY) is not yet reached, go to step 2.

The deflation of the Xi matrix for EZ-PLS, in order to get the desired deflation
of the cross-scatter matrix, is

Xi+1 ← Xi −XiwX,iw′
X,i.

Similarly, one could do the deflation of the Yi matrix

Yi+1 ← Yi −YiwY,iw′
Y,i,

also leading to the same desired deflation of the cross-scatter matrix.

Dual

Taking Eq. (3) or equivalently the NIPALS iteration into account, the deflation
of the kernel matrices corresponding to the EZ-PLS deflation is found to be

Ki+1
X ← Ki

X −
1
λ2

i

Ki
XαX,iα′X,iK

i
X = Ki

X − αY,iα′Y,i.

Properties

• Since the wX,i and the wY,i are the left and right singular vectors of SXY,
all wX,i are orthogonal to each other, and all wY,i are orthogonal to each
other.

• For the same reason, if i 6= j: w′
X,iSXYwY,j = 0. In other words, projec-

tions onto noncorresponding wX,i and wY,j are uncorrelated.
• All EZ-PLS components can be calculated at once by optimizing the same

cost function as for the first component, taking the first (orthogonality)
property into account as an additional constraint.

The EZ-PLS form is the easiest, in the sense that because of the nature of the
deflation, it is in fact not more than solving for the most important singular
vectors of SXY. That is why it is discussed here; it is less useful in practice.
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4.3.6 Regression-PLS

Whereas EZ-PLS is not often used for regression (note that it is entirely
symmetric between X and Y, whereas regression is not; it is rather used for
modelling though), regression-PLS is the PLS formulation that is generally
preferred for (multivariate) regression (see [14]). We will first discuss the de-
flations that are characteristic for regression-PLS. Further on we will explain
how regression can be carried out using the results from these deflations.

Primal

The difference between EZ-PLS and Regression-PLS lies in the way the defla-
tion is carried out. Regression-PLS has the intention of modelling one (pos-
sibly) vectorial variable Y with the other vectorial variable X, hence the
name.5 It is thus asymmetric between the two spaces, which is expressed in
the deflation step:

2,4. Deflate by orthogonalizing Xi to its projection onto the weight vector
wX,i, XiwX,i, and recomputing the scatter matrix:

Xi+1 ←
(

I− XiwX,iw′
X,iX

i′

w′
X,iXi′XiwX,i

)
Xi = Xi − XiwX,iw′

X,iX
i′

w′
X,iXi′XiwX,i

Xi, (17)

=

(
I− αY,iα′Y,i

α′Y,iαY,i

)
Xi. (18)

Finally (see later, Eq. (28)) we will perform a regression of Y based on the
αY,i. (The αY,i can be computed from X as will become clear later, see Eq.
(27).) Therefore, we also deflate Yi with αY,i to remove the information
captured by the ith iteration:

Yi+1 ←
(

I− αY,iα′Y,i

α′Y,iαY,i

)
Yi. (19)

This boils down to the following deflation of the scatter matrix:

SXY
i+1 ← SXY

i − λi

w′
X,iSXX

iwX,i

SXX
iwX,iw′

Y,i.

The philosophy behind this kind of deflation is as follows: after step i, part of
the information in Xi, namely its projection αY,i onto the ith PLS direction

wX,i, is captured already: the component αY,iα′Y,i

α′
Y,i

αY,i
Xi of Xi (along αY,i) per-

fectly models the component αY,iα′Y,i

α′
Y,i

αY,i
Yi of Yi. This information should not

be used or modelled again in next steps, so it is ‘subtracted’ from both Xi

and Yi. In the next step, the direction of maximal covariance between the
remaining information Xi+1 and Yi+1 is found, and so on.
5 In literature this form of PLS is best known as PLS2, or PLS1 for the case where

Y is one-dimensional.
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Dual

Using Eqs. (18) and (19), the deflation of the kernel matrices corresponding
to the regression-PLS deflation can be shown to be

Ki+1
X ←

(
I− αY,iα′Y,i

α′Y,iαY,i

)
Ki

X

(
I− αY,iα′Y,i

α′Y,iαY,i

)
.

Analogously,

Ki+1
Y ←

(
I− αY,iα′Y,i

α′Y,iαY,i

)
Ki

Y

(
I− αY,iα′Y,i

α′Y,iαY,i

)
.

Properties

• The different weight vectors wY,i are not orthogonal (it is even possible
that they are all collinear, e.g. in the case where Y is one-dimensional).
The different weight vectors wX,i, however, are orthogonal. Using Eq. (17),

w′
X,iS

i+1
XY = w′

X,i

((
I− XiwX,iw′

X,iX
i′

w′
X,iXi′XiwX,i

)
Xi

)′

Yi+1 = 0,

so that wX,i is in the left null space of SXY
i+1. Since wX,i+1 is a

left singular vector of SXY
i+1 this means that wX,i+1 will be orthog-

onal to wX,i. By replacing the left-most Xi in the above equation by(
I− Xi−1wX,i−1w

′
X,i−1X

i−1′

w′
X,i−1X

i−1′Xi−1wX,i−1

)
Xi−1, and so on for Xi−1, . . ., one can see

that also for j < i, wX,j is orthogonal to wX,i. Thus, all wX,i are mutu-
ally orthogonal:

W′
XWX = I,

where WX represents the matrix built by stacking the vectors wX,i next
to each other.

• The vectors αY,i are mutually orthogonal. Using Eq. (18), for i ≤ j one
has:

Xj ′αY,i = Xi′
(

I− αY,iα′Y,i

α′Y,iαY,i

)
. . .

(
I− αY,j−1α′Y,j−1

α′Y,j−1αY,j−1

)
αY,i.

For j = i + 1, this is immediately proven to be zero. When this product is
zero for all j : i < j < j∗, α′Y,jαY,i = w′

X,jX
j ′αY,i = 0, and the matrices

between brackets in the above product commute. Since this is indeed true
for j = i + 1, by induction it is proved for all i < j that:

Xj ′αY,i = 0, (20)
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and thus by left multiplication with wX,j

α′Y,jαY,i = 0. (21)

Note that since αY,i = XiwX,i, this means that the projections αY,i of
Xi onto their weight vectors wX,i are uncorrelated with each other. This
property may remind you of CCA.

• This orthogonality property in Eq. (21) of the αY,i leads to the fact that

wY,i = Yi′αY,i = Y′
(

I− αY,1α′Y,1

α′Y,1αY,1

)
. . .

(
I− αY,i−1α′Y,i−1

α′Y,i−1αY,i−1

)
αY,i

⇒ wY,i = Y′αY,i, (22)

up to a normalization.
• Furthermore, one finds that for i < j:

XjwX,i =

(
I− αY,j−1α′Y,j−1

α′Y,j−1αY,j−1

)
. . .

(
I− αY,iα′Y,i

α′Y,iαY,i

)
XiwX,i,

=

(
I− αY,j−1α′Y,j−1

α′Y,j−1αY,j−1

)
. . .

(
I− αY,iα′Y,i

α′Y,iαY,i

)
αY,i,

= 0. (23)

This generally does not hold for i ≥ j.
• Another consequence of Eq. (21) is, for i < j:

Yj ′αY,i = Yi′
(

I− αY,iα′Y,i

α′Y,iαY,i

)
. . .

(
I− αY,j−1α′Y,j−1

α′Y,j−1αY,j−1

)
αY,i,

= 0. (24)

• And thus also, for i < j:

α′X,jαY,i = wX,jYj ′αY,i,

= 0. (25)

• From this it follows that

wX,i = Xi′αX,i = X′
(

I− αY,1α′Y,1

α′Y,1αY,1

)
. . .

(
I− αY,i−1α′Y,i−1

α′Y,i−1αY,i−1

)
αX,i

⇒ wX,i = X′αX,i, (26)

up to a normalization factor.

Thus as a summary:
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wX,i ∝ X′αX,i,

wY,i ∝ Y′αY,i,

w′
X,jwX,i = 0,

α′Y,jαY,i = 0,

α′X,jαY,i = 0 for i < j,

XjwX,i = 0 for i < j,

Yj ′αY,i = 0 for i < j.

4.3.7 Final Regression in Regression-PLS

Primal

The entire regression-PLS algorithm is composed of a (generally noninvertible)
linear mapping of X towards k so-called latent variables (in the current context
we would rather call them dual variables) αY,i = XiwX,i, followed by a
regression of Y on AY, where AY contains αY,i as its columns.

The part of X that has been deflated and thus will be used for regres-
sion is equal to the sum

∑k
i=1

αY,iα′Y,i

α′
Y,i

αY,i
Xi = AYP′, where the vectors pi =

Xi′ αY,i

α′
Y,i

αY,i
make up the columns of P. Analogously, define ci = Yi′ αY,i

α′
Y,i

αY,i

making up the columns of C.
Now, if we go on with the deflations until the rank of Xi is zero,6 the space

spanned by the orthogonal vectors αY,i is complete and we have that

X = Atot
Y Ptot′ = AYP′ + Arem

Y Prem′ = AYP′ + EX,

with EX the part of X that is not used in regression when the components cor-
responding to Arem

Y are not kept. Also, because of Eq. (23) and the definition
of P: pj

′wX,i = 0 for i < j, and thus:

Prem′WX = 0.

This leads to the linear mapping from X to AY:

AYP′WX = XWX

⇒ AY = XWX (P′WX)−1
, (27)

where the matrix to be inverted is lower triangular (again because pj
′wX,i = 0

for i < j), so the inversion can be carried out efficiently.
The regression from the latent variables αY towards Y is given by

6 Note that the number of deflations k will always be smaller (or equal, in full
LSR) than the rank of X. This results in matrices WX,WY,A′

X,A′
Y,P, and C

all having k columns.
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Y =
k∑

i=1

αY,iα′Y,i

α′Y,iαY,i
Yi + Yk+1 = AYC′ + EY, (28)

where EY = Yk+1 is the part of Y that is not predicted by the first k PLS
components (the misfit).

Thus, the entire PLS regression formula is given by

ypred =
[
WX (P′WX)−1 C′

]′
xpred =

[
C (W′

XP)−1 W′
X

]
xpred.

Dual

Let us define AX as the matrix containing αX,i as its columns. Now we use the
properties in Eqs. (26) and (23), showing that WX = X′AX and Xk+1WX =
0 leading to W′

XP ∝ W′
XX′AY = A′

XKXAY, where the proportionality is
an equality up to a diagonal normalization matrix A′

YAY on the right-hand
side. Furthermore, using Eq. (24), it is seen that E′YAY = 0 and thus (from
Eq. (28)) that with the same diagonal normalization matrix as proportionality
factor (which will thus be cancelled out), C ∝ CA′

YAY = Y′AY. This leads
to the complete dual form of regression-PLS:

ypred =
[
Y′AY (A′

XKXAY)−1 A′
XX

]
xpred.

Note that the entire algorithm only requires the evaluation of kernel func-
tions, since Xxpred also consists of inner products only (or equivalently kernel
evaluations k(·, ·)). Using this fact, the solution can be cast in the standard
form of kernel-based pattern recognition algorithms:

ypred =
∑

i

βik(xi,xpred), (29)

where βi are the columns of β = Y′AY (A′
XKXAY)−1 A′

X.

5 Classification: Fisher Discriminant Analysis (FDA)

Definitions

We first define some symbols necessary to develop the theory. Since these
quantities are defined in general for uncentered data, first this general defi-
nition is given. Afterwards, when appropriate the simplified formula will be
provided for centered data. The latter formulas are the ones used in this sec-
tion.

• Mean (n is the total number of samples xi)

m =
1
n

∑

i

xi.
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• Class mean (Sk is the set of samples belonging to cluster k, and nk = |Sk|,
the number of samples in cluster k; thus n =

∑
k nk)

mk =
1
nk

∑

i:xi∈Sk

xi.

• Total scatter matrix

ST =
∑

k

∑

xi∈Sk

(xi −m)(xi −m)′.

• Within-class k scatter matrix

Sk =
∑

xi∈Sk

(xi −mk)(xi −mk)′.

• Within-class scatter matrix

SW =
∑

k

Sk. (30)

• Between-class scatter matrix

SB =
∑

k

nk(mk −m)(mk −m)′.

For centered data (as we will assume in the remainder of this section), we
get:

m = 0,
1
n

∑

k

nkmi = 0,

ST =
∑

k

∑

xi∈Sk

xix′i = X′X = SXX,

SB =
∑

k

nkmkm′
k.

Finally, the following properties hold:

• ST = SB + SW.
• When the number of classes is 2, they can be indexed as + and −, and:

SB =
n+n−

n
(m+ −m−)(m+ −m−)′. (31)
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5.1 Cost Function

Fisher discriminant analysis (FDA) [10] is designed for discrimination be-
tween two classes, indexed by + and −. It finds the direction w along which
the between-class variance divided by within-class variance is maximized:

w = argmaxw

w′SBw
w′SWw

. (32)

Note that when w is a solution, cw with c a real number is a solution too.
In fact, we are not interested in the norm of w, but only in the direction it is
pointing at. Thus, equivalently, we could optimize the constrained optimiza-
tion problem

w = argmaxww′SBw (33)
s.t. w′SWw = 1.

5.2 Primal

This optimization problem can be solved by differentiating the Lagrangian
L(w, µ) = w′SBw − µw′SWw with respect to w and equating to zero:

∇wL(w, µ) = 0

⇒ SBw = µSWw. (34)

This is again a generalized eigenvalue problem, with both SB and SW symmet-
ric and positive semidefinite. We are interested in the dominant eigenvector.

Another way to get the same result is by maximizing the correlation be-
tween the data projected on a weight vector w with the labels y (for each
sample being 1 or −1, depending on the class the sample belongs to) of the
corresponding data points. This is in fact CCA, applied on the data vectors
on the one hand, and the labels on the other hand:

(
0 SXy

SyX 0

)(
wX

wy

)
= λ

(
SXX 0
0 Syy

)(
wX

wy

)
,

from which wX can be solved as

SXX
−1SXyS−1

yySyXwX = λ2wX.

To see that wX = w, note that for centered data X (so m is made equal
to 0 by centering), SXX = ST = SB + SW, Syy = n is a scalar, and SXy =
X′y = n+m+ − n−m−. One can then show that SXyS−1

yySyX = 4n+n−
n2 SB,

and thus
4n+n−

n2
SBwX = λ2(SB + SW)wX

⇒ SBwX =
λ2

4n+n−
n2 − λ2

SWwX.
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This is exactly the Fisher discriminant generalized eigenvalue problem, with
µ = λ2

4n+n−
n2 −λ2

and w = wX.

5.3 Dual

Define y+ as (y+)i = δyi,1 and y− as (y−)i = δyi,−1 (where we use the Dirac
delta δi,j , which is equal to 1 if i = j and to 0 if i 6= j). The dual can again
be derived by using w = X′α:

SBw = µSWw

⇓ Eqs. (30), (31)
n+n−

n X(m+ −m−)(m+ −m−)′X′α
= µX

∑
k=+,−

∑
xi∈Sk

(xi −mk)(xi −mk)′X′α
⇓

n+n−
n KX

(
y+
n+
− y−

n−

)(
y+
n+
− y−

n−

)′
KXα

= µKX

(
I− 1

n+
y+y′+ − 1

n−
y−y′−

)
KXα

⇓
Mα = µNα,

where we substituted M = n+n−
n KX

(
y+
n+
− y−

n−

)(
y+
n+
− y−

n−

)
K′

X, and N =

KX

(
I− 1

n+
y+y′+ − 1

n−
y−y′−

)
KX.

For centered data as is assumed here, the projection of a test point xtest

onto the FDA direction corresponding to α can again be computed as

n∑

i=1

αik(xi,xtest).

5.4 Multiple Discriminant Analysis (MDA)

While Fisher discriminant analysis is originally designed for the two-class
problem, optimization of the very same cost function (Eqs. (32) and (33))
leading to the same generalized eigenvalue problem in Eq. (34) can be used
for solving the multiclass problem (e.g. [9]). In that case, a few generalized
eigenvector may be necessary to do the classification (typically the number of
clusters minus one).

The intuition behind this is to maximize the total between-class covariance
for a certain amount of within-class covariance. This amounts to maximizing
the signal-to-noise ratio present in the projections of the samples onto the
discriminant directions. Here, the distance between the projected clusters is
the signal one is interested in, and the variance in the projections of the
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clusters is the noise. Interestingly, it has been shown that PLS also maximizes
the between-class covariance when computed on a class indicator matrix Y,
however, this is done without considering the within-class covariance [4, 20].
Deriving the dual version of MDA can be done in a similar way as for FDA.

6 Spectral Methods for Clustering

Clustering is a standard problem in pattern recognition: identify groups of
samples that supposedly belong to the same class, without any information
on the class labels (unsupervised). The problem is often solved with classical
algorithms of which the K-means algorithm is the best known. Most of these
algorithms are designed for data with Gaussian class distributions. In many
cases, however, this is an oversimplification. Furthermore, many well-known
algorithms are based on a nonconvex optimization problem.

Therefore in recent years a significant amount of research has been carried
out in the field of spectral clustering (SC) [2, 5, 8, 17, 18, 22, 26, 32]. The
clustering problem is relaxed or restated, leading to efficient algorithms with a
simple eigenvalue problem at the core. Furthermore, in general no Gaussianity
assumptions are made.

Spectral clustering algorithms generally consist of three components: the
computation of a suitable affinity matrix, expressing the similarities between
the samples; an eigenvalue problem based on this affinity matrix, returning
(eigen)vectors that reflect the cluster structure in the data; and a final step
performing the actual clustering, based on these eigenvectors. In the next three
subsections we will briefly go into each of these aspects.

6.1 The Radial Basis Function as the Kernel

Whereas standard clustering methods assume Gaussian class distributions (or
make similar assumptions on the distribution), spectral clustering methods in-
tend not to do this. In order to achieve this goal, the use of the Euclidian inner
product as a similarity measure between the samples is avoided. Instead, the
kernel trick can be used to implicitly compute an inner product between fea-
ture maps of the samples. More specifically, in spectral clustering algorithms,
most often the radial basis kernel function (RBF kernel) is used as similarity
measure:

k(xi,xj) = exp
(
−‖xi − xj‖2

2σ2

)
.

Note that for ‖xi − xj‖ ¿ σ, the RBF kernel is k(xi,xj) ' 1− ‖xi−xj‖2
2σ2 .

Thus, locally, the RBF kernel is related to the Euclidian metric. On the other
hand, for two points at a farther Euclidian distance from each other (that is,
‖xi − xj‖ À σ), we have that k(xi,xj) ' 0. The result is that the algorithm
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will not see if a group of points with a ‘diameter’ considerably larger than
σ is Gaussianly distributed or not. Only for samples that are relatively close
to each other, it will give an indication of how close exactly they are. This is
desirable: it allows us to cluster samples that are stretched out in a nonlinear
shape.

Even though, in spectral clustering methods, very often an RBF kernel is
used, it is important to know that the similarity measure does not have to
be positive definite; however, for most spectral clustering variants (such as
the ones described in Sects. 6.2.1 and 6.2.2), it has to be nonnegative (which
is indeed true for the RBF kernel). Because of the absence of the positive
definiteness requirement, the matrix containing the similarities between the
samples is usually called the affinity matrix in this context, instead of the
kernel matrix. Besides the RBF kernel matrix, other affinity matrices are
used in literature, such as the k-nearest neighbor affinity matrix. However, for
uniformity in this chapter, here we will continue to use the term kernel matrix
instead of affinity matrix, and denote it by K.

As opposed to the techniques discussed in the previous sections, in spec-
tral clustering, usually the kernel/affinity matrix is not centered. In case it is
centered, we will denote this explicitly, here, by using Kc.

6.2 Which Eigenvectors?

We will only give a brief overview of the methods available in the literature. All
of them compute the eigenvectors of a (generalized) eigenproblem involving
K. We will outline two methods that represent a relaxation of a discrete
optimization problem on a graph, and another method based on the alignment
between two matrices. Every method described is derived for the two-cluster
case. However, they appear to be extendible towards multicluster problems,
by taking more than one eigenvector (often k − 1 when there are k clusters).

6.2.1 Normalized Cut Cost

Shi and Malik [26] start from graph theoretic concepts. They relax the problem
of finding the minimal normalized cut cost (NCut) of the graph, where nodes
of the graph correspond to samples and the (positive) kernel entries are the
weights (affinities) of the edges in between the nodes. Intuitively, an NCut is
the total affinity between the clusters, normalized by the total affinity of each
cluster with the entire sample. Mathematically, this is

NCut(K,y) =

∑
i,j:yi=−yj=1 Kij∑

i:yi=1

∑
j Kij

+

∑
i,j:yi=−yj=−1 Kij∑

i:yi=−1

∑
j Kij

.

Thus, one looks for a label assignment yi ∈ {1,−1} such that NCut(K,y) is
minimized.
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This problem can be proven to be equivalent to minimizing ỹ′(D−K)ỹ

ỹ′Dỹ

subject to ỹi ∈ {1,−ỹ}, and ỹ′D1 = 0, for some ỹ and for D = diag(K1).
When the discrete vector ỹ is replaced by a continuous vector αi, so the
problem is relaxed, an approximation for the unrelaxed problem solution can
be found by solving the generalized eigenvalue equation:

(D−K)α = λDα s.t. α′D1 = 0,

where one is interested in the vector α corresponding to the smallest eigenvalue
λ while satisfying the constraint. One can show, however, that the constraint is
satisfied for all of the generalized eigenvectors except for the one with smallest
eigenvalue λ = 0 with corresponding generalized eigenvector α = 1. Thus, one
searches for the eigenvector with the smallest nonzero eigenvalue.

6.2.2 Average Cut Cost

Another approach discussed in [26] is based on a relaxation of the minimum
average cut cost (ACut) problem. The ACut cost is the sum of the (positive)
kernel entries corresponding to pairs of points belonging to different classes,
normalized by the number of samples in both classes:

ACut(K,y) =

∑
i,j:yi=−yj=1 Kij∑

i:yi=1 1
+

∑
i,j:yi=−yj=−1 Kij∑

i:yi=−1 1
,

where again yi ∈ {1,−1}. This is similar to the NCut problem, and gives rise
to a similar eigenvalue problem to be solved after relaxation:

(D−K)α = λα.

The eigenvector α corresponding to the smallest nonzero eigenvalue will reflect
the cluster structure of the data.

6.2.3 Alignment-Based Approach

The alignment-based method (proposed in [8]) is a relaxation of the problem
to find a label assignment that maximizes the alignment between the label
matrix and the centered kernel matrix Kc:

max
y

y′Kcy s.t. yi ∈ {1,−1}.

Since this problem would be combinatoric again, it is relaxed by replacing the
discrete vector y with a continuous vector α

max
α

α′Kcα s.t. ‖α‖ = n

for n samples. This corresponds to solving the eigenvalue problem:

Kcα = λα.

Here the dominant eigenvector contains the relaxed labels as its entries.
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6.3 What to do With the Eigenvectors?

We have now discussed how to compute eigenvectors that reflect the clustering
in some way. There are different methods to extract the final clustering from
these eigenvectors. In general, one constructs a matrix A = (α1α2 · · ·αk)
containing the eigenvectors as its columns. Then some traditional distance-
based clustering is performed on the rows of A in this k-dimensional space,
sometimes after normalizing all rows of A to unit length. For further reading
on different possible approaches we refer to the literature, see e.g. [18, 22, 36].

7 Summary

Table 1 contains the cost functions optimized for most of the algorithms de-
scribed in this chapter. Tables 2 and 3 give the primal and the dual eigen-
problems to be solved in order to optimize these cost functions. These tables
contain columns M, N, and v, each indicating which matrices and eigenvector
to use in the generalized eigenproblem of the form Mv = λNv.

Given this, we still need to know how to project test data on the directions
found by solving these generalized eigenproblems. This is summarized as:

• projection of a test sample onto weight vector in primal space w: w′xtest.
• projection of a test sample onto weight vector in feature space correspond-

ing to the dual vector α:
∑n

i=1 αik(xi,xtest).

8 Conclusions

Among the algorithms discussed in this chapter, there are a number of classic
methods from multivariate statistics, such as PCA and CCA; some methods
that are virtually unknown in that field but are hugely popular in specific ap-
plication domains, such as PLS; and finally some methods that are typically
the product of the machine learning community, such as the clustering meth-
ods presented here, and all the extensions based on the use of kernels. Despite
coming from so many different fields, the algorithms clearly display their com-
mon features, and we have emphasized them by casting them in a common
notation and with a common language. From those comparisons, and from the
comparison with the family of kernel methods based on quadratic program-
ming, it is clear that this approach based on spectral methods can be consid-
ered another major branch of the KM family. The duality that emerges here
from SVD approaches naturally matches the duality derived by the Kuhn–
Tucker Lagrangian theory developed for those methods, and the statistical
study demonstrates similar properties as shown in [27] and [28].

Some properties of this class of algorithms are already extremely appealing
to machine learning practitioners, while others still need research attention.
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Table 1. Cost functions optimized by the different methods

Maximize variance w′SXXw
w′w

PCA w′SXXw s.t. ‖w‖2 = 1

Minimize residuals ‖(I−ww′)X‖2F
Maximize correlation

w′XSXYwY√
w′

X
SXXwX

√
w′

Y
SYYwY

CCA Maximize fit w′
XSXYwY s.t. ‖XwX‖2 = ‖YwY‖2 = 1

Minimize misfit ‖w′
XX−w′

YY‖2 s.t. ‖XwX‖2 = ‖YwY‖2 = 1

Maximize covariance
w′

X
SXYwY√

w′
X

wX

√
w′

Y
wY

PLS Maximize fit w′
XSXYwY s.t. ‖wX‖2 = ‖wY‖2 = 1

Minimize misfit ‖w′
XX−w′

YY‖2 s.t. ‖wX‖2 = ‖wY‖2 = 1

Maximize between-class to
w′SBw

w′SWw

FDA within-class covariance w′SBw s.t. w′SWw

SC1 Normalized cut cost

∑
i,j:yi=−yj=1

Kij∑
i:yi=1

∑
j

Kij
+

∑
i,j:yi=−yj=−1

Kij∑
i:yi=−1

∑
j

Kij

SC2 Average cut cost

∑
i,j:yi=−yj=1

Kij∑
i:yi=1

1
+

∑
i,j:yi=−yj=−1

Kij∑
i:yi=−1

1

SC3 Alignment Kc

Table 2. Primal forms (not for spectral clustering algorithms)

M N v

PCA SXX I w

RCCA

(
0 SXY

SYX 0

) (
SXX + γI 0

0 SYY + γI

) (
wX

wY

)

PLS

(
0 SXY

SYX 0

) (
I 0

0 I

) (
wX

wY

)

FDA SB SW w

PLS, for example, is designed precisely to operate with input data that are
high-dimensional and present highly correlated features, exactly the situation
created by the use of kernel functions. The match between the two concepts
is perfect, and in a way PLS can be better suited to the use of kernels than
maximal-margin methodologies. Furthermore it is easily extendible towards
multivariate regression. On the other hand, one of the major properties of
support vector machines is not naturally present in eigenalgorithms: sparse-
ness. Deliberate design choices can be made in order to enforce it, but the
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Table 3. Dual forms

M N v

PCA K I α

RCCA

(
0 KXKY

KYKX 0

) (
KX

2 + γKX 0

0 KY
2 + γKY

) (
αX

αY

)

PLS

(
0 KXKY

KYKX 0

) (
I 0

0 I

) (
αX

αY

)

n+n−
n

KX

(
y+
n+

− y−
n−

)

FDA ·
(

y+
n+

− y−
n−

)′
KX KX

(
I− y+y′+

n+
− y−y′−

n−

)
KX α

SC1 D−K D α

SC2 D−K I α

SC3 Kc I α

optimal way to include sparseness in this class of methods still remains an
open question. Another important point of research is the stability and sta-
tistical convergence of general eigenproblems for finite sample sizes. For work
on the stability of the spectrum of Gram matrices, we refer to [24] and [25].

The synthesis offered by this unified view has immediate practical conse-
quences, allowing for unified statistical analysis and for unified implementation
strategies.
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