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Introduction: We propose and validate a continuous, entirely probabilistic model of the all night sleep and daytime sleepiness processes. The 
model is implemented as a hierarchical Gaussian Mixture Model (hGMM). We use features extracted from recordings following a 
polysomnographic (PSG) setting. In the study we focus on describing sleep and transitions to sleep as a continuous process. The output of a 
GMM is a set of curves representing probability of each sleep or wakefulness state at a given time point. Results are based on data recorded in 
the SIESTA and SENSATION projects.

Methods: We use data from C3-M2 and C4-M2 EEG channels for 
the sleep process modeling task. To unify laboratory differences 
we downsample data to 100 Hz and bandpass filter data with a 
Butterworth filter of order 8 and the frequencies range from 0.4 to 
40 Hz. We cut data into segments of three seconds and we 
compute a compact spectral representation of the individual 
segments using autoregressive (AR) model coefficients. Next, we 
use hierarchical mixtures to model the distribution of the AR 
coefficients (Figure 1). 

GMMs are used in the lower part of the hierarchy. Inference about 
the model parameters is done in a semi-supervised manner, where 
information from the R&K sleep profiles is used for model selection 
and parameters initialization. In the second step, unlabeled data is 
used to allow the models to adapt more freely to the data (Figure 
2). Finally, Bayes’ theorem is applied to compute the probabilities 
of group membership for unseen data. 
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Figure 1: A hierarchical GMM structure. 
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Statistically significant rank correlations were observed with 12 
psychometric variables (p-values < 0.01). 

We validate the new sleep representation through a comparison 
with the R&K sleep profiles. We correlate the features extracted
from both the discrete R&K and continuous GMM sleep profiles 
with 26 external criteria of sleep−psychometric variables. 
PSG recordings of 176 healthy subjects (83 males and 93 females)
age between 20 and 95 were used. Two nights PSG recordings  
were available and R&K scored for each subject.  
Using EEG (Fz, Cz, Oz) from a driving simulator experiment we 
discriminate between epochs with the high (>50) and low (0) values 
of the Karolinska Drowsiness Scores (KDS) computed per 20 sec.
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Conclusions: The continues sleep model has shown the same or a higher level of information about the sleep process in the investigated 
correlation tasks. The continuous sleep model can successfully complement the R&K standard for a comprehensive description of sleep. 
Promising preliminary results were obtained when discriminating low and high drowsiness states of subjects driving on a simulator.  

The confusion matrix of classifying the 4 sec long segments 
of low drowsiness (KDS=0)  versus the segments of high 
drowsiness (KDS>=50) representing “sleep onset”. 29 
subjects, 10654 (5433/5221) segments, 10 x 10-fold CV.    

0.780.22

0.20.80

Results:. 

0

0.5

1

s2

8100 8105 8110 8115 8120 8125 8130
0

0.5

1

de
ep

time [sec]

Top: R&K and hGMM continuous 
traces for 74 year old healthy control 
female; filter 3 time points. 
Left: Continuous sleep traces for S2 
and deep sleep, 42 years old healthy 
control female. In the epoch scored as 
stage S2 according to R&K, a 10 sec 
period of deep sleep is identifiable

Correltaions of the selected R&K and hGMM 
based sleep features with:

Top left: Sleep Quality Index 
(Saletu et al. 1987)

Top right: Fine motor activity test 
(Grunberger 1977) 

Left: Alphabetical cross-out test 
(Grunberger 1977) 
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