# **RELATIONSHIP BETWEEN SLEEP STRUCTURE OF PATIENTS AFTER ISCHEMIC STROKE AND DAILY MEASURES**

ZUZANA ROŠŤÁKOVÁ zuzana.rostakova@savba.sk

ROMAN ROSIPAL roman.rosipal@savba.sk



target

170msec

RT + 1000 msec

Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia

### **STUDY OBJECTIVE**

To identify specific sleep temporal profiles of patients in the acute phase of ischemic stroke, which are significantly correlated with different physiological, demographic or daily life measures.

### **SLEEP REPRESENTATION**

• sleep variables extracted from the AASM scores [2]

wtsp

total sleep time tst sleep efficiency eff

wake within the total sleep period % of time spent in a sleep stage tst\_stage

### DATASET

- 23 patients after ischemic stroke
  - 6 women, 17 men;  $57 \pm 13$  years; NIHSS  $\in \{1, \ldots, 10\}$  [1]
  - hospitalised at the 1st Department of Neurology, University Hospital Bratislava, Slovakia
  - cognitive tests after the sleep EEG measurement (one to 10 days after stroke)

### **COGNITIVE TESTS**

- sleep latency latency to REM sl\_rem sl
- sleep probabilistic curves [3] for the sleep stages Wake, N1, N2, N3
  - the REM stage added from the AASM scores



- FINE MOTOR ACTIVITY TEST (FMAT)
  - goal: to redraw the template patterns  $\Rightarrow$  percentage of correctly retraced pixels
- LATERALISED ATTENTION NETWORK TEST (LANT) [5]
  - Alerting (LANT\_A)  $\rightarrow$  benefit of temporal pre-cues
  - Orienting inhibitory (LANT\_OI)  $\rightarrow$  cost of an invalid spatial cue
  - **Orienting facilitatory** (LANT\_OF)  $\rightarrow$  benefit of a valid spatial cue
  - Conflict resolution (LANT\_C)  $\rightarrow$  ability to overcome distracting stimuli
- the REACTION TIME TEST (RTT)
  - goal: to click as quickly as possible when a target (circle) occurred on a computer screen (index/middle finger, dominant/non-dominant hand)

150mec

100msec

750msec

- WORKING MEMORY TEST (WMT) [6]
  - goal: repeat a sequence of presented digits in the same or reverse order

#### METHODS

- 1. "static approach"
  - Spearman correlation coefficient between results of cognitive tests and sleep characteristics extracted from the AASM scores
- 2. "dynamic approach"
  - cluster analysis of the sleep probabilistic curves (*k*-means [4])
  - the Kruskal–Wallis test for detecting significant differences in cognitive tests between clusters

### **RESULTS – "STATIC APPROACH"**

| cognitive test | sleep variable | Spearman $\rho$ | p–value |
|----------------|----------------|-----------------|---------|
| FMAT_4,6       | eff            | < -0.52         | < 0.028 |
| FMAT_5,6       | sl             | > 0.50          | < 0.035 |
| LANT_OF        | sl_rem         | - 0.66          | 0.003   |
| LANT_RVF_OF    | tst_rem        | 0.55            | 0.017   |
| RTT_2,3,4,Min  | tst_N1         | > 0.53          | < 0.014 |
| TMENSTAT_A_2,3 | wtsp           | > 0.43          | < 0.039 |
| TMENSTAT_A_3   | tst_REM        | - 0.42          | 0.047   |
| TMENSTAT_B_1   | tst_N3         | 0.61            | 0.006   |

#### REFERENCES

#### [1] T. Brott, H. P. Adams, C. P. Olinger, J. R. Marler, W. G. Barsan, J. Biller, J. Spilker, R. Holleran, R. Eberle, and

### CONCLUSION

"Static" and "dynamic" approach have provided comprehensive insight into relationships between the sleep pattern and cognitive tests. The advantage of the sleep probabilistic curves analysis, "dynamic" approach:

6

• • •

#### • T-MENSTAT QUESTIONNAIRE [7]

- subjective level of energy and motivation, fatigue, frustration and drowsiness
- before and after the cognitive tests (T–MENSTAT\_A, T–MENSTAT\_B)

## **RESULTS – "DYNAMIC APPROACH"**



- V. Hertzberg. Measurements of acute cerebral infarction: a clinical examination scale. *Stroke*, 20(7):864–870, 1989.
- [2] C. Iber, S. Ancoli-Israel, A. L. Chesson, and S. Quan. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, 2007.
- [3] A. Lewandowski, R. Rosipal, and G. Dorffner. Extracting more information from EEG recordings for a better description of sleep. Computer method and programs in biomedicine, 108(3):961–972, 2012.
- [4] S. P. Lloyd. Least squares quantization in pcm. *IEEE* Transactions on Information Theory, 28:129–137, 1982.
- [5] D. J. Greene, A. Barnea, K. Herzberg, A. Rassis, M. Neta, A. Raz, and E. Zaidel. Measuring attention in the hemispheres: The Lateralized Attention Network Test (LANT). Brain and Cognition, 66(1):21–31, 2008.
- [6] A. S. Kaufman and E. O. Lichtenberger. Assessing adolescent and adult intelligence. John Wiley & Sons, 2005.
- [7] Pacific Development and Technology, LCC. T– MENSTAT - Sample form and scoring key, 2012.

- Deeper understanding of the sleep dynamics (Figure 2).
- Allows using advanced techniques of mathematical statistics.

### ACKNOWLEDGEMENT

This research was supported by the Slovak Research and Development Agency (grant number APVV-16-0202) and by the VEGA 2/0011/16 grant.

**Figure 2:** Cluster analysis of the sleep probabilistic curves of the N1, N2 and N3 sleep stages.