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Multimodal Neuroelectric Interface Development
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Abstract—We are developing electromyographic and electroencephalo-
graphic methods, which draw control signals for human-computer
interfaces from the human nervous system. We have made progress in four
areas: 1) real-time pattern recognition algorithms for decoding sequences
of forearm muscle activity associated with control gestures; 2) signal-pro-
cessing strategies for computer interfaces using electroencephalogram
(EEG) signals; 3) a flexible computation framework for neuroelectric
interface research; and d) noncontact sensors, which measure electromyo-
gram or EEG signals without resistive contact to the body.

Index Terms—Brain-computer interfaces (BCI), electroencephalogram
(EEG), electric field sensors, electromyogram (EMG), neuroelectric
interfaces.

I. INTRODUCTION

We define a system that couples the human nervous system
electrically to a computer as a neuroelectric interface—a sensing and
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processing system that can use signals from the brain or from other
parts of the nervous system, such as peripheral nerves, to achieve
device control. We regard brain-computer interfaces (BCIs) [1] as
a subset of neuroelectric interfaces. Our current focus is on using
features from electroencephalograms (EEGs) and electromyograms
(EMGs) as control signals for various tasks, such as aircraft or
vehicle simulations and other graphic displays.

Our long-term goals are to: 1) develop new modes of interaction that
cooperate with existing modes such as keyboards or voice; 2) aug-
ment human-system interaction in wearable, virtual, and immersive
systems by increasing bandwidth and quickening the interface; and
3) enhance situational awareness by providing direct connections be-
tween the human nervous system and the systems to be controlled. Our
near-term goals include: 1) a signal acquisition and processing system
for real-time device control; 2) automatic EMG-based recognition and
tracking of human gestures; and c) feasibility testing of EEG-based
control methods.

In this paper, we will survey selected results and demonstrations
of EMG- and EEG-based neuroelectric interfaces. We will describe
an EMG-based flight stick, an EMG-based numeric keypad, an EEG-
based interface for smooth, continuous control of motion in a graphic
display, and comparison of algorithms for modeling the EEG patterns
associated with real and imagined hand motion. Finally, we will dis-
cuss recent developments of noncontact electric field sensors for EMG
and EEG recording.

Our approach is to describe a body of developmental research,
which is still in progress, and to indicate methods that have potential
for engineering development. Given the BCI focus of this Special
Issue, descriptions of purely EMG-based interfaces will be brief.
We will describe the EEG results and the new sensor developments
in more detail.

II. EMG INTERFACES

A. EMG-Based Flight Stick

In our first demonstration, a computer transformed EMG signals
recorded from four bipolar channels placed on the forearm of a sub-
ject into control signals for an aircraft simulator. Thus, the processed
EMG signals controlled an imaginary flight stick [2]. EMG samples
were processed in real time using a flexible signal-processing frame-
work developed in our laboratory. Our feature extraction procedures in-
cluded routines to filter out redundant and meaningless channels with
a mutual information metric [3]. The features were moving averages
of the EMG signal from overlapping windows, where the data within
a window are nearly stationary.1 Our model for mapping EMG signal
features to gestures uses mixtures of Gaussians within a hidden Markov
model context. We tested and validated this system with many trials
over a two-year period in three subjects, who flew and landed high-fi-
delity simulations of a Boeing F-15 Eagle or a Boeing 757-200 freighter
aircraft. Control of both aircraft was adequate for normal maneuvers.
For the 757, a real-time landing sequence under neuroelectric control
was filmed at NASA Ames Research Center (see on-line demos [4] and
[5]).

B. EMG-Based Numeric Keypad

We have also found that EMG signals from the arm can distinguish
typing of one key from another on a “virtual keyboard.” In this demon-

1We used overlapping moving averages of the rectified, unfiltered EMG
signal, sampled at either 500 (joystick task) or 2000 Hz (typing task). The
windows contained 128 points and overlapped preceding windows by 96
points. We tried other types of features such as autoregressive coefficients,
wavelets, and short-time Fourier transforms, but the moving averages provided
the most robust response for everyday use.

1534-4320/03$17.00 © 2003 IEEE



200 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 11, NO. 2, JUNE 2003

stration, we programmed a computer to translate eight bipolar EMG
signals recorded from the forearm into commands for typing the digits
0–9 on a virtual numeric keypad. We used the same processing system
for the typing interface as for the EMG flight stick (see footnote1).
However, the hidden Markov model was retrained using EMG data
recorded during typing. Tests were performed with random lists of data
to be entered. The typing activity consisted of using the numeric keypad
on a computer keyboard. One participant was trained and used for the
experiments. He was allowed to type 0–9 and “enter.” In tests, the sub-
ject typed the series 1–9 and 0 three times, or a series of four different
dates consisting of four digits each. Using such lists, we found that
the digits 0–9 could be detected with 100% accuracy from the pro-
cessed EMG signals. A demonstration of this system was also recorded
at NASA Ames Research Center [see on-line demo [6]].

III. EEG INTERFACES

A. One-Dimensional Graphic Device Control

Previous research has shown that control signals for graphic devices,
such as cursors, can be drawn from EEG signals such as� and �
rhythms [7]. Our approach is to develop a flexible processing system,
which will adapt to different tasks and users. To do this, we explored
several tasks and an array of pattern recognition and machine learning
algorithms.

In open-looptests, we measured EEG during real or imaginary mo-
tions and analyzed motion-related changes in the EEG signals later. The
tasks were mouse motion and keyboard typing. Inclosed-looptests,
we used a real-time system, which provided visual feedback about mo-
tion-related EEG signals to the user. The feedback algorithms included
narrow-band linear filters for signals such as�-rhythm, broadband fil-
ters developed adaptively, on-line measures of EEG complexity, and
support vector machine classifiers [8], [9]. In one closed-loop task, the
subject moved a needle gauge up or down by voluntary control of EEG.
We trained subjects with a series of target needle positions. In another
task, we mapped the subject’s EEG signals to left and right turns of a
simulation of a Mars rover vehicle as it traveled at constant speed over
a Mars terrain database. In both tasks, subjects viewed either the gauge
or the rover on a large video display.

In each task, either 32 or 64 channels of EEG were recorded with
a QuickCap (Neuromedical Supplies, Inc.) using the extended Inter-
national 10-20 System [10] with digitally linked mastoid references
(1000-Hz sampling rate, 1–30-Hz bandpass). We visually inspected
the multichannel EEG recordings and hand-selected artifact-free seg-
ments that clearly contained oscillatory activity. On these segments, we
used singular value decomposition (SVD) to reduce the multichannel
recordings to a small number of SVD components. Generally, from
four to eight SVD components were sufficient to account for 95% of
the variance in the hand-selected EEG segments. In some experiments,
we approximated these components with a few electrodes, located near
the positive and negative extremes of the scalp distributions of the SVD
loadings. For these recordings, we used either a 2-channel EEG headset
(Sensorphone, Allied Products, NY) or disposable self-adhesive Ag-Cl
electrodes (Neuromedical Supplies, VA). For example, for the mouse
motion task in Subject 1, we approximated the first two SVD compo-
nents with electrode pairs FC1-TP7 and AF8-P4, respectively. For the
mouse motion task in Subject 2, we used a set of 12 electrodes that
formed two lines straddling Cz and parallel to the interaural line, with
all electrodes uniformly spaced 4 cm apart.2

2In all EEG tests, we ruled out EMG contamination of the EEG signals as a
source of control. We computed the average event-related band power of several
narrow bands between 0.1 and 50 Hz for both EEG and EMG signals in a 1-s
long interval, centered on motion onset. For all bands above 5 Hz, EMG power
in the band increased during the motion, whereas EEG power either decreased
or remained unchanged.

In Subject 1, a 45-year old right-handed male, open-loop tests
showed that�-rhythm bursts were visible in the raw EEG. The
�-rhythm spectral peak was centered at 9 Hz. A narrow-band 6–11-Hz
filter was satisfactory for closed-loop feedback. Using the smoothed
filter output power, Subject 1 was able to drive the needle gauge up or
down to reach target locations in two testing sessions. In Subject 2, a
32 year-old left-handed male,�-rhythms were not visible in the raw
EEG.

Since a filter for�-rhythm was not clearly satisfactory for both
subjects, we explored other, more general measures of EEG com-
plexity. The idea here is that regardless of the specific peaks at
which sensorimotor EEG rhythms oscillate, their synchrony will
influence signal complexity. In our context, we define complexity as a
measure reflecting changes in EEG regularity or predictability. Signals
corresponding to periods of high EEG synchrony will be more regular,
predictable, and will have low complexity. Periods of relatively low
EEG synchrony will have high complexity.

We examined coarse-grained entropy rates (CER), Gaussian process
entropy rates (GPER), spectral entropy (SE), and wavelet entropy
(WE). CER is an empirical complexity measure based on stochastic
process entropy rates and the Kolmogorov-Sinai entropy of nonlinear
dynamical systems [11], [12]. CER have been shown to reflect
complexity of physiological signals [10], [13], [14]. If we consider the
EEG to be a zero-mean stationary Gaussian process, we can estimate
entropy rates directly from the EEG spectrum [15], [16]. Thus, we
define GPER to be a linear measure, which can fully describe an
underlying stationary Gaussian process but cannot describe nonlinear
data. SE is a measure which computes Shannon entropy over the
normalized power spectral density function; i.e., periodogram [17].
There is a clear connection between GPER and SE as both measures
reflect changes of the frequency spectra of the EEG over different
brain states. For WE, we extend the concept of SE by replacing the
Fourier transform with the discrete wavelet transform [18], [19]. So
for WE, we computed Shannon entropy over the wavelet coefficients
at individual resolution levels.

We applied these measures to open loop data from the mouse motion
task in the two subjects. For each measure, estimates were computed for
the first two SVD components over time in windows of 2048 samples,
which were advanced in 100-sample steps, and further smoothed with
a 9-point noncausal running mean (Fig. 1). For Subject 1, three mea-
sures—SE, GPER, and CER—reflected changes in EEG synchrony or
complexity at nearly the same times as the�-rhythm. The WE mea-
sure correlated poorly with�-rhythm. For component 1, the correlation
coefficients of each measure with�-rhythm in the real-motion condi-
tion werer = �0:87,�0.87,�0.87, and�0.62, for SE, GPER, CER,
and WE, respectively. The corresponding correlations for the imaginary
condition werer = �:85,�0.81,�0.79, and�0.55. All correlations
were significant (t-test,p < 0.001). Tests of Spearman rank-order cor-
relations produced the same results, but with lower values ofr (�0.49
to �0.75). Qualitatively similar results were obtained for Subject 2.
We completed several real-time tests and demonstrations of EEG-based
control of the Mars rover using complexity measures. For Subject 2,
we recorded a demonstration of one of the sessions in which the CER
served as the control signal [on-line demo, [20]].

B. EEG-Based Typing

For the EEG-based typing tasks, we sought to detect the periods
of physical keyboard typing activity from EMG-free EEG recordings
and to use linear models or machine-learning algorithms to translate
the EEG signals into interface commands. We did not seek to identify
which keys were pressed. We sought to discriminate typing from rest
and also to discriminate left- from right-hand typing. Our approach was
the same as for the motion control tasks: multichannel EEG recordings
were reduced to a few SVD components. These components served as
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(a)

(b)

Fig. 1. �-rhythm filter performance compared with estimates of EEG
complexity for the open-loop mouse motion task in Subject 1. Lines show the
filter outputs for a series of EEG input windows over time. The heavy line is
for SVD component 1, which was derived from earlier 32-channel recordings
and estimated here with bipolar electrodes FC1–TP7. The thin line is for SVD
component 2, estimated by AF8–P4. Vertical lines mark the times when real
or imagined hand motions began. Both components change near the onset of
real or imagined motions, but component 1 shows larger and more regular
changes than component 2. The�-rhythm filter has increased output power, or
synchronization, before motions and decreased power, or desycnhronization,
during or after motions. The other measures (SE, GPER, CER, and WE)
estimate signal complexity, which change in a direction opposite to that of
�-rhythm. For a description of each measure, see the text. (a) Real left-hand
movement. (b) Imaginary left-hand movement.

inputs to filters or algorithms that tracked typing behavior. We used
the same two subjects who performed the mouse motion tasks and a
third subject, a 47-year old right-handed male. Our results are limited
to open-loop tests with real motion, and do not imply that classification
of EEG is possible without the motor task.

For both subjects, we collected six 5-min runs consisting of typing
the keysA or F with the left pinkie and index fingers, or typing the keys
J or ; (semicolon) with the right index and pinkie fingers, or alternating
use of the left and right hands within a single run. Typing consisted
of self-paced bursts of keystrokes lasting about 5 s followed by about
10 s of rest. In other tests, subjects pressed a single key and then rested
for about 10 s. The EEG was sampled at 1000 Hz, digitally band-passed
from 1 to 30 Hz, and resampled at 100 Hz. EMG data from the left and
right forearms were recorded with four pairs of electrodes placed on
the wrists and upper forearms. EMG was sampled at 1000 Hz, digitally

band-passed from 30 to 150 Hz, then resampled at 300 Hz and rectified.
To model typing behavior using EEG, we tested the following three
different types of algorithms:

2) �-Rhythm filter:a linear finite impulse response (FIR) filter with
a passband centered on the peak of�-rhythm signals observed
near electrodes C3 or C4 in the subject’s resting EEG;

3) Adaptive linear combiner (ALC):the Widrow–Hoff LMS algo-
rithm [21] was used to model periods of the EMG signal corre-
sponding to rest using the EEG time series;

4) Support vector classifier (SVC):we used the LIBSVM software
for linear support vector classification [22], [23].

We found that the�-rhythm filter was inadequate to model the rela-
tionship between EEG and periods of typing or rest. We next explored
modeling typing and rest segments with an ALC. Here, we found that
for Subject 1, a 50-tap ALC was sufficient to track the motion and
rest periods associated with typing. For Subject 2, who had no clear
�-rhythm, a 500-tap ALC also tracked rest and typing. The results sug-
gest that EEG signals associated with typing can serve as an index of
the typing activity. A previous report using a different task drew a sim-
ilar conclusion [24].

With an ALC, it is possible to freeze adaptation after training and plot
the spectrum of the transfer function (Fig. 2). For Subject 1, both the 50-
and 500-tap filters converged to a set of simple, unimodal transfer func-
tions that favored frequencies below 10 Hz. For Subject 2, the transfer
functions appeared to be bimodal, with one broad peak in the 5–10-Hz
range and another broad peak in the 10–15-Hz range. In the 500-tap fil-
ters for Subject 2, a third broad peak is present in the 20–25-Hz range.

The ALCs were trained to use EEG-SVD component inputs to model
EMG activity exclusively during rest periods. So the ALC output is
higher during the periods of rest than during typing. Thus, the filter
output serves as a rest detector, or conversely, the filter error serves as a
motion detector. For Subject 1, the 50-tap filter produced higher output
during rest than during typing (Fig. 3). For Subject 2 (not shown), the
500-tap filter performed in a similar fashion.

For the conditions in which typing consisted of single keystrokes
followed by rest, the ALC filters (and some nonlinear variants) did not
serve well for discriminating typing from rest. To solve this problem,
we attempted to classify EEG segments as either motion or nonmo-
tion using windowed EEG signals as inputs to a SVC. Subject 3 per-
formed five 5-min runs of single-key typing. In each of the first four
runs, the subject typed for a few seconds using either the left or right
hand then rested for a few seconds. In the fifth run, the subject alter-
nated between right- and left-hand typing with rest periods in between.
Filtered, 64-channel EEG signals served as inputs to the SVC. The
data were digitally low-pass filtered at 30 Hz and down sampled to
128 Hz. Successive 128-point segments (1 s of data with 75% overlap)
were labeled as nonmotion, left-hand motion, or right-hand motion.
Periods were classified as motion when the mean of the corresponding
left- or right-hand EMG signal was greater than a predefined threshold.
A linear SVC was trained on EEG signals from either the odd- or
even-numbered runs and tested on the remaining runs. SVC results
for left- versus right-hand typing were inconclusive, with accuracies
near 60%. However, the SVC’s successfully classified motion versus
nonmotion with accuracies between 78% and 91%. In the most gen-
eral case—training with all four initial runs and testing with the final
run of mixed hand motion—the classification accuracies for rest versus
left-hand typing, rest versus right-hand typing, or rest versus either
hand typing were 85%, 82%, and 88%, respectively. Increasing the
EEG bandwidth by refiltering with a 64-Hz cutoff did not substantially
change these values (respectively: 84%, 87%, and 87%), suggesting
that EMG artifact did not contribute to the classification.

We also analyzed the weights derived using linear SVC as we did for
the ALCs. A spectral analysis of the support vector weights revealed a
prominent peak at 18 Hz, which was well defined over centro-parietal
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(a)

(b)

Fig. 2. Transfer functions of the (a) 50-tap and (b) 500-tap ALCs trained
to predict rest or right-hand typing periods for the first four SVD EEG
components. Typing consisted of bursts of alternating keystrokes using pinkie
and index fingers for a few seconds, followed by a few seconds of rest.

electrodes C1, C2, Cp1, and Cp2. We found in a separate analysis that
reducing the 64-channels to six channels, including these four, F1 and
F2 allowed for classification accuracy of 90% for the test in which the
four initial runs served as training data for the fifth run.

IV. NONCONTACT SENSORDEVELOPMENT

The NASA Ames Research Center is working with Quantum Ap-
plied Science and Research, Inc. (QUASAR) to develop new sensors
for neuroelectric recordings. These sensors can measure the electric po-
tential in free space and so they do not require resistive, or even good
capacitive coupling to the subject. The principal sensor innovation is
providing high-input impedance for the electrode that senses the free
space potential, while accommodating the input bias current of the am-
plifier. The input capacitance of present electrometer grade amplifiers
is of order 1–3 pF. This allows us to arrange the coupling capacitances
of the electrometer to yield a near ideal measurement of the bioelectric
potential.

Fig. 3. Performance of the ALC on test data in Subject 1 over time, showing
tracking of the motion and rest periods. The upper graph shows the filter output;
the lower graph shows the rectified EMG time series. Shaded regions correspond
to continuous left-hand finger tapping (lower) or rest (upper). Since the filter
was trained to model the EEG signals during the rest periods, periods of motion
correspond to relatively low filter output power. This is because the EEG signals
during motion are different than during rest, and so do not match the filter
derived for EEG signals during rest periods.

Despite its small size, the new sensor is approximately 100 times
better than prior electric potential sensors [25]. At 10 Hz, it has
comparable sensitivity to conventional resistive contact (dry or wet)
electrodes. In the off-body mode, the sensor can make an accurate
measurement through clothing. The sensor also has a broadband
response from 0.01 to 10 kHz, proving sufficient bandwidth to
measure EEG and EMG, and essentially all other bioelectric signals
of interest.

In our initial tests, we have made direct comparisons between surface
recordings of EMG and EEG with noncontact recordings of the same
signals.

A. EMG Tests

We recorded EMG from two surface Ag–AgCl electrodes spaced 2
cm apart on the forearm over the flexor carpi radialis. The subject was
asked to make a fist and this signal was recorded for multiple trials.
Then these wet electrodes were removed and replaced by a QUASAR
noncontactE-field sensor and the subject repeated the fist clenching
exercise. The noncontact sensor recordings tracked the conductive elec-
trode EMG recordings well in the range from 500 to 2000 Hz.

B. EEG Tests

We recorded EEG from eight surface Ag–AgCl electrodes spaced
4-cm apart and lying on lines 2-cm anterior or posterior to Cz, running
from left to right, all referred to average mastoids with ground at AFz.
A QUASAR noncontactE-field sensor was tested at the points lying
in between the EEG electrodes. EEG was recorded with a Neuroscan
Nuamp at gain of 19, bandpass noncontact sensor tracked the main fea-
tures of the EEG spectrum seen in the Ag-AgCL electrode recordings
(Fig. 4). For example, both recordings show a clear peak in the spec-
trum near 10 Hz, which reflects endogenous alpha rhythm.

V. DISCUSSION ANDCONCLUSION

The EMG-based joystick and typing tasks were chosen to replicate
something with which computer users are already familiar. These tra-
ditional types of interfaces are certainly not suitable for gesture-based
systems as they force unnatural and unintuitive movements. Signal pro-
cessing and machine learning are maturing to a point whereby methods
such as hidden Markov models are suitable for ordinary laptops without
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Fig. 4. Power spectrum of recordings from QUASAR and Ag-Cl electrodes in
a 21-year-old male subject. The Quasar sensor tracks the main features of EEG
spectrum seen in the Ag-AgCL electrode recordings. Including the peak near
10 Hz, which reflects endogenous alpha rhythm. The line at 60 Hz is noise from
the main power lines resulting from imperfect shielding.

special hardware, however the user interfaces are still two-dimensional
mouse-based systems. The ultimate trial of our EMG methodology will
be to have a system with a more natural gesture command interface.
This could then be used to test the performance of EMG-based systems
for everyday use by regular users. Once multiple users have been run
on multiple tasks we will then be able to form a usability assessment.

Our EEG-based developments show that one-dimensional (1-D)
control of a graphic device is feasible as a human computer interface.
For different subjects different algorithms may be required, such as
�-rhythm filters or complexity measures. Our system is programmed
to allow rapid switching among these algorithms or parallel use of the
algorithms. We have demonstrated control of a needle gauge and a
rendition of turning a Mars rover simulator left and right in real time.

We found that the type of task and the qualities of EEG in a subject
interact with the signal processing requirements of the interface. In the
simplest case, a narrow bandpass filter tracked 1-D continuous motion
for a subject with clear�-rhythm. Other, more general measures, such
as SE, GPER, and CER tracked continuous motion in a subject who did
not have a clear�-rhythm. Our data sample is too limited to allow us to
assess the relative discriminative power of the various measures—we
can only show that several measures, which use the full EEG spectrum,
provide information similar to that given by a�-rhythm filter. Such
measures could be useful in a wider range of subjects, especially those
who do not have a clear�-rhythm. In the typing tasks, more elaborate
filters, such as an ALC or the SVC-derived filters were required. As the
complexity of the task increased from 1-D motion to typing with dif-
ferent fingers on right and left hands, we found that increasing amounts
of data and algorithmic complexity were required. For the single-key
typing task, as many as 8192 coefficients (64 channels� 128 samples)
were used in the SVC. However, we also found that analysis of the SVC
weights could reduce the number of channels from 64 to 6 (or 768 co-
efficients) without sacrificing accuracy. In any case, the computational
demands for using these algorithms in real-time are modest and do not
pose a barrier to applications.

At least two serious limitations apply to our data. First, the number
of subjects is small. This was necessary to allow us time to explore a
wide range of algorithms. Second, our experiments are qualitative and
lack statistical and quantitative metrics, such as bit rate, as used in other

BCI studies. For the present, we must present these results as merely
being indicative of promising BCI approaches for device control.

Our initial findings with the QUASAR noncontact sensors show that
it is possible to record both EMG and EEG signals of high fidelity
without a conductive link to the body. The bandwidth and gain of these
sensors are appropriate for practical applications.
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[11] M. Paluŝ, “Coarse-grained entropy rates for characterization of complex
time series,”Physica D, vol. 96, pp. 64–77, 1996.

[12] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.
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[16] M. Paluŝ, “On entropy rates of dynamical systems and Gaussian pro-
cesses,”Phys. Lett. A, vol. 227, pp. 301–308, 1997.

[17] T. Inouye, K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y.
Katsuda, and M. Hirano, “Quantification of EEG irregularity by use of
the entropy of the power spectrum,”Electroencephalogr. Clin. Neuro-
physiol., vol. 79, pp. 204–210, 1991.

[18] S. Blanco, A. Figliola, R. Q. Quiroga, O. A. Rosso, and E. Serrano,
“Time-frequency analysis of electroencephalogram series (III): Informa-
tion transfer function and wavelets packers,”Phys. Rev. E, Stat. Plasmas
Fluids Relat. Interdiscip. Top., vol. 57, pp. 932–940, 1998.

[19] R. Q. Quiroga, O. A. Rosso, E. Basar, and M. Schürmann, “Wavelet
entropy in event-related potentials: A new method shows ordering of
EEG oscillations,”Biol. Cybern., vol. 84, pp. 291–299, 2001.

[20] EHS Group. EEG Quicktime Video (2002). [Online]. Available: http:
//ic.arc.nasa.gov/projects/ne/videos/EHS-RR-MARS-ROVER-060 402.
MOV

[21] B. Widrow and S. D. Stearns,Adaptive Signal Processing. NJ: Pren-
tice-Hall, 1985.



204 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 11, NO. 2, JUNE 2003

[22] C.-C. Chang and C.-J. Lin, “Training nu-support vector classifiers:
Theory and algorithms,”Neural Comput., vol. 13, pp. 2119–2147,
2001.

[23] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multi-class
support vector machines,”IEEE Trans. Neural Networks, vol. 13, pp.
415–425, Mar. 2002.

[24] T. Mima, T. Matsuoka, and M. Hallen, “Information flow from cortex to
muscle in humans,”Clin. Neuorphysiol., vol. 112, pp. 122–126, 2001.

[25] D. D. Sentman, “Schumann resonances,” inHandbook of Atmospheric
Electrodynamics, H. Volland, Ed. Boca Raton, FL: CRC, 1995.

The Wadsworth Center Brain–Computer Interface (BCI)
Research and Development Program

Jonathan R. Wolpaw, Dennis J. McFarland, Theresa M. Vaughan,
and Gerwin Schalk

Abstract—Brain–computer interface (BCI) research at the Wadsworth
Center has focused primarily on using electroencephalogram (EEG)
rhythms recorded from the scalp over sensorimotor cortex to control
cursor movement in one or two dimensions. Recent and current studies
seek to improve the speed and accuracy of this control by improving the
selection of signal features and their translation into device commands, by
incorporating additional signal features, and by optimizing the adaptive
interaction between the user and system. In addition, to facilitate the
evaluation, comparison, and combination of alternative BCI methods, we
have developed a general-purpose BCI system called BCI-2000 and have
made it available to other research groups. Finally, in collaboration with
several other groups, we are developing simple BCI applications and are
testing their practicality and long-term value for people with severe motor
disabilities.

Index Terms—Augmentative communication, brain–computer interface
(BCI), conditioning, electroencephalography (EEG), mu rhythm, rehabili-
tation, sensorimotor cortex.

I. INTRODUCTION

In awake people, primary sensorimotor cortical areas often display
8–12-Hz electroencephalographic (EEG) activity when not engaged
in processing sensory input or producing motor output [1]–[3], (re-
viewed in [4]). This idling activity—called mu rhythm when focused
over somatosensory or motor cortex, and visual-alpha rhythm when
focused over visual cortex—is thought to be produced by thalamocor-
tical circuits [4], [5]. Mu-rhythm activity comprises a variety of dif-
ferent 8–12-Hz rhythms and is usually associated with 18–26-Hz beta
rhythms [6]–[9]. Mu and beta rhythms wax and wane in association
with actual movement or imagination of movement [9]–[12].

In our brain–computer interface (BCI) studies, people with or
without motor disabilities (e.g., amyotrophic lateral sclerosis, cerebral
palsy, spinal cord injury) learn to control mu- and/or beta-rhythm
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amplitudes to move a cursor in one or two dimensions to choices on a
computer screen [13]–[15]. Fig. 1(a) illustrates the basic phenomenon.
In this example, the user controls vertical cursor movement by
controlling the amplitude of a 12-Hz mu rhythm focused over left
sensorimotor cortex. The frequency spectra indicate that control is
focused in the mu-rhythm band and to a lesser extent in a beta-rhythm
band.

In our standard protocol, a linear equation translates mu-rhythm or
beta-rhythm amplitude from one or several scalp locations into cursor
movement 10 times/s. Users learn over a series of 40-min sessions to
control the cursor. They participate in 2–3 sessions per week, and most
demonstrate significant control within 2–3 weeks. In initial sessions,
users typically employ some form of motor imagery (e.g., imagination
of hand movements, whole body activities, relaxation, etc.) to control
the cursor. As training proceeds, imagery usually becomes less im-
portant, and users report that they move the cursor just as they per-
form normal movements, that is, without thinking about the details of
performance.

While EEG from only one or two scalp locations control the cursor
online, data from 64 locations over the entire scalp (recorded with an
electrode cap) are stored for subsequent offline analysis. This anal-
ysis defines the full topography of EEG changes associated with target
position, detects non-central nervous system (CNS) artifacts such as
electromyographic (EMG) or electrooculographic (EOG) activity, and
helps guide improvements in online operation. It relies largely on the
measurer2, the proportion of the total variance in mu- or beta-rhythm
amplitude that is accounted for by target position and thereby reflects
the user’s level of EEG control. For example, ther

2 topographical anal-
ysis in Fig. 1(a) shows that control is sharply focused over left senso-
rimotor cortex and in the mu- and beta-rhythm frequency bands. This
measure correlates well with the accuracy of target selection, and, thus,
can be used in offline analysis to identify alternative signal features that
are likely to improve performance [16].

With this control, users can move the cursor to answer spoken
yes/no questions with accuracies>95% [17], [18]. They can also
achieve independent control of two different mu- or beta-rhythm
channels and use that control to move a cursor in two dimensions [19].
Recent work has concentrated on developing precise one-dimensional
control, and on applying it to choosing among up to eight different
selections. Users have achieved information transfer rates up to
20–25 b/min [20], [21].

II. CURRENT AIMS

Our research has concentrated on defining the topographical, spec-
tral, and temporal features of mu- and beta-rhythm control and on op-
timizing the mutually adaptive interactions between the user and the
BCI system. Our central goal is to improve the speed and accuracy of
BCI communication and to show that it can serve the practical needs of
people with severe motor disabilities. In accord with this goal, we are
focusing on four major aims.

A. Optimizing Feature Selection, Extraction, and Translation

We are evaluating alternative methods for selecting and extracting
the signal features, that is, the mu- and beta-rhythm amplitudes that
control cursor movement. This evaluation includes assessments of ad-
ditional signal processing methods, recording locations, and frequency
bands. For example, we have found that the choice of spatial filtering
method is critically important. For mu and beta rhythms, a common
average reference or a large (6-cm interelectrode distance) Laplacian
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