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Abstract

In this paper, we propose the application of the Kernel Princi-
pal Component Analysis (PCA) technique for feature selection in a
high-dimensional feature space where input variables are mapped by
a Gaussian kernel. The extracted features are employed in the regres-
sion problems of chaotic Mackey-Glass time-series prediction in a noisy
environment and estimating human signal detection performance from
brain event-related potentials elicited by task relevant signals. We com-
pared results obtained using either Kernel PCA or linear PCA as data
preprocessing steps. On the human signal detection task we report the
superiority of Kernel PCA feature extraction over linear PCA. Simi-
lar to linear PCA we demonstrate de-noising of the original data by
the appropriate selection of various non-linear principal components.
The theoretical relation and experimental comparison of Kernel Princi-
pal Components Regression, Kernel Ridge Regression and ε-insensitive
Support Vector Regression is also provided.

Key words: feature extraction; principal components; non-linear regression;
kernel functions; de-noising; human performance monitoring.
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1 Introduction

In many real world applications appropriate preprocessing transformations
of high dimensional input data can increase overall performance of algo-
rithms. In general, there exist some correlations among input variables;
thus dimensionality reduction or so-called feature extraction allows us to
restrict the entire input space to a sub-space of lower dimensionality.

In this study, we have used the recently proposed Kernel Principal Com-
ponent Analysis (PCA) [1] method for feature selection in a high dimensional
feature space F (with dimension M ≤ ∞). This allows us to obtain features
(nonlinear principal components) with higher-order correlations between in-
put variables, and in addition, we can extract nonlinear components up to
the number of data points n [1] (assuming n ≤M). Kernel PCA [1] is based
on computation of the standard linear PCA [2] in a feature space, into which
input data x are mapped via some nonlinear function Φ(x). To this end,
we compute a canonical dot product in space F using a kernel function,
i.e. K(x,y) = (Φ(x).Φ(y)). This ’kernel trick’ allows us to carry out any
algorithm, e.g. Support Vector Regression (SVR) [3, 4, 5], that can be ex-
pressed in the terms of dot products in space F . Next, the selected features
are used to train the ε-insensitive SVR (see reference for detailed descrip-
tion [3]) and Kernel Principal Components Regression (KPCR) [6] models
to estimate the desired input-output mappings. Both techniques perform a
linear regression in a feature space F , however, different cost functions are
used. Whilst the ε-insensitive cost function used in SVR is more robust for
noise distributions close to uniform, in the case of Gaussian noise, the best
approximation to the regression provides a quadratic cost function. Ap-
plying a quadratic cost function to SVR leads to Kernel Ridge Regression
(KRR) [7, 5]. Both KRR and KPCR are the shrinkage estimators designed
to deal with multicollinearity or near-linear dependence of regressors (see
e.g. [8, 9, 2]). Multicollinearity results in large variances and covariances
for the least-squares estimators of the regression coefficients and can dra-
matically influence the effectiveness of a regression model. We will give the
theoretical basis of KPCR and will also highlight the relation to KRR.

In noisy environments linear PCA is a widely used de-noising technique.
We can discard the finite variance due to the noise by projection of the data
onto the main principal components. The same technique can be applied in
feature space F by using the main nonlinear principal components computed
by Kernel PCA. However, the number of nonlinear principal components ex-
tracted by Kernel PCA can be substantially higher (up to the number of
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data points n). This can be nearly always advantageous, especially in the
situation where the dimensionality N of the input data points is significantly
smaller than the number of data points and a data structure is spread over
all eigendirections. In this case decreasing the input dimensionality by pro-
jecting the input data to l < N main linear principal components may lead
to the loss of significant amounts of information. On the other hand, we
can believe that ”spreading” the information about the data structure into
k > N nonlinear principal components will give the potential of discarding
some of the eigendirections where the noisy part of data is mainly contained.

On two data sets - the chaotic Mackey-Glass time series and human
Event Related Potentials (ERPs) - we compared KPCR, KRR and SVR1

techniques. We demonstrate that by selection of a subset of nonlinear prin-
cipal components used in KPCR we can achieve superior or similar results
compared to KRR, moreover, in the case of KPCR the final linear model in a
feature space is significantly smaller. On the ERPs data set, the results sug-
gest the superiority of Kernel PCA for feature extraction over linear PCA in
some cases. In addition, the performance of KPCR and KRR models using
the quadratic loss function is slightly superior to SVR. This suggests that
on that particular data set a Gaussian type of noise is more likely; i.e. the
regression models with a quadratic loss function are preferable.

The following section presents the Kernel PCA technique and linear re-
gression models in a high dimensional kernel defined space. The problem of
de-noising of the data set in the kernel space is also addressed. In Section 3
the construction of the data sets employed is described. Section 4 discusses
the results. Section 5 concludes the paper.

2 Methods

2.1 Kernel PCA and Multi-Layer SVR

The PCA problem in high-dimensional feature space F can be formulated
as the diagonalization of an n-sample estimate of the covariance matrix

Ĉ =
1

n

n
∑

i=1

Φ(xi)Φ(xi)
T ,

where Φ(xi) are centered nonlinear mappings of the input variables xi ∈ R
N

i = 1, ..., n (the centralization of the mapped data in F is given in Appendix

1We are assuming an SVR model with the ε−insensitive cost function.
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A). The diagonalization represents a transformation of the original data
to new coordinates defined by orthogonal eigenvectors V. We have to find
eigenvalues λ ≥ 0 and non-zero eigenvectors V ∈ F satisfying the eigenvalue
equation

λV = ĈV.

Realizing, that all solutions V with λ 6= 0 lie in the span of mappings
Φ(x1), . . . ,Φ(xn), Schölkopf et al. [1] derived the equivalent eigenvalue prob-
lem

nλα = Kα, (1)

where α denotes the column vector with coefficients α1, ..., αn such that

V =
n

∑

i=1

αiΦ(xi)

and K is a symmetric (n× n) Gram matrix with the elements

Kij = (Φ(xi).Φ(xj)) := K(xi,xj).

Normalizing the solutions Vk corresponding to the non-zero eigenvalues λk

of the matrixK, translates into the condition λk(α
k.αk) = 1 [1]. Finally, we

can compute the k-th nonlinear principal component of x as the projection
of Φ(x) onto the eigenvector Vk

β(x)k := (Vk.Φ(x)) =
n

∑

i=1

αk
i K(xi,x). (2)

We then select the first p < n nonlinear principal components, e.g. the
directions which describe a desired percentage of data variance, and thus
work in the p-dimensional sub-space of feature space F . This allows us
to construct multi-layer support vector machines [1], where a preprocessing
layer extracts features for the next regression or classification task. In our
study we focus on the regression problem.

Generally, the SVR problem (see e.g. [4]) can be defined as the determi-
nation of function f(x, ω) which approximates an unknown desired function
and has the form

f(x,ω) = ωTΦ(x) + b,

where b is an unknown bias term and ω ∈ F is a vector of unknown co-
efficients. In [3] the following regularized risk functional has been used to
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compute the unknown coefficients b and ω :

Rsvr(ω, b) =
1

n

n
∑

i=1

|Err|ε + η‖ω‖2, (3)

where Err = yi − f(xi,ω), {yi}
n
i=1 are the desired outputs; η ≥ 0 is a regu-

larization constant to control the trade-off between complexity and accuracy
of the regression model and |Err|ε is Vapnik’s ε-insensitive loss function [3].

In [3] it is shown that the regression estimate that minimizes the risk
functional (3) has the form:

f(x,γ, γ∗) =
n

∑

i=1

(γ∗i − γi)K1(xi,x) + b, (4)

where {γi, γ
∗
i }

n
i=1 are Lagrange multipliers.

Combining the Kernel PCA preprocessing step with SVR yields a multi-
layer SVR (MLSVR) in the following form [1]:

f(x,γ, γ∗) =
n

∑

i=1

(γi − γ∗i )K1(β(xi),β(x)) + b,

where components of vectors β are defined by (2). However, in practice
the choice of appropriate kernel function K1 can be difficult. In this study,
a polynomial kernel of first order K1(x,y) = (x.y) is employed. We are
thus performing a linear SVR on the p-dimensional sub-space of F . The
advantage of linear SVR over ordinary linear regression is the possibility of
using a large variety of loss functions to suit different noise models [4], e.g.
Vapnik’s proposed ε-insensitive function is more robust for noise distribu-
tions close to uniform and also provides a sparse solution to the regression
problem. However, in the case of Gaussian noise the best approximation
to the regression provides a least-squares method with the quadratic loss
function of the form L(yi, f(xi,w)) = [yi − f(xi,w)]2. We discuss methods
using this loss function in the next section.

2.2 Feature Space Regularized Least-Squares Regression Mod-

els and Multicollinearity

The multicollinearity or near-linear dependence of regressors is a serious
problem that can dramatically influence the usefulness of a regression model.
Multicollinearity results in large variances and covariances for the least-
squares estimators of the regression coefficients. Multicollinearity can also
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produce estimates of the regression coefficients that are too large in absolute
value. Thus the values and signs of estimated regression coefficients may
change considerably given different data samples. This effect can lead to a
regression model which fits the training data reasonably well, but in general
bad generalization of the model can occur. This fact is in a very close
relation to the argument stressed in [10], where the authors have shown that
choosing the flattest function2 in a feature space can, based on the smoothing
properties of the selected kernel function, lead to a smooth function in the
input space. There exist several methods to deal with multicollinearity;
in our case we discuss the ridge regression (RR) and principal component
regression (PCR) approaches. Using the theoretical basis of these techniques
in input space, we will now discuss their parallel in a kernel defined feature
space; i.e. KPCR and KRR.

2.2.1 Kernel Principal Component Regression

Consider the standard regression model in feature space F

y = Φξ + ε, (5)

where y is a vector of n observations of the dependent variable, Φ is an
(n×M) matrix of regressors whose i-th row is the vector Φ(xi) of the mapped
xi observation into M ≤ ∞ dimensional feature space F , ξ is a vector of
regression coefficients and ε is the vector of error terms whose elements
have equal variance σ2, and are independent of each other. We also assume
that regressors {Φj(x)}

M
j=1 are zero-mean. Thus ΦTΦ is proportional to

the sample covariance matrix and Kernel PCA can be performed to extract
M eigenvalues {λj}

M
j=1 and corresponding eigenvectors {Vj}Mj=1. The k-th

principal component of Φ(x) is given by (2). By projection of all original
regressors onto the principal components we can rewrite (5) as

y = Bw + ε, (6)

where B = ΦV is now an (n ×M) matrix of transformed regressors and
V is an (M ×M) matrix whose k-th column is the eigenvector Vk. The
columns of the matrix B are now orthogonal and the least squares estimate
of the coefficients w becomes

ŵ = (BTB)−1BTy = Λ−1BTy, (7)

2The flatness is defined in the sense of penalizing high values of the regression coeffi-
cients estimate.

7



where Λ = diag(λ1, λ2, . . . , λM ). The results obtained using all principal
components—the PCA projection of the original regressor variables—in (6)
is equivalent to that obtained by least squares using the original regressors.
In fact we can express the estimate ξ̂ of the original model (5) as

ξ̂ = Vŵ = V(BTB)−1BTy =
M
∑

i=1

λ−1
i V

i(Vi)TΦTy

and its corresponding variance-covariance matrix [2] as

cov(ξ̂) = σ2V(BTB)−1VT = σ2VΛ−1VT = σ2
M
∑

i=1

λ−1
i V

i(Vi)T . (8)

To avoid the problem of multicollinearity PCR uses only some of the princi-
pal components. It is clear from (8) that the influence of small eigenvalues
can significantly increase the overall variance of the estimate. PCR simply
deletes the principal components corresponding to small values of the eigen-
values λi, i.e. the principal components where multicollinearity may appear.
The penalty we have to pay for the decrease in variance of the regression
coefficient estimate is bias in the final estimate. However, if multicollinearity
is a serious problem, the introduced bias can have a less significant effect in
comparison to a high variance estimate. If the elements of w corresponding
to deleted regressors are zero, an unbiased estimate is achieved [2].

Using the first p-nonlinear principal components (2) to create a linear
model based on orthogonal regressors in feature space F we can formulate
the KPCR model as

f(x, c) =
p

∑

k=1

wkβ(x)k + b =
p

∑

k=1

wk

n
∑

i=1

αk
i K(xi,x) + b =

n
∑

i=1

ciK(xi,x) + b,

(9)
where {ci =

∑p
k=1 wkα

k
i }

n
i=1.

We have shown that by removing the principal components whose vari-
ances are very small we can eliminate large variances of the estimate due to
multicollinearities. However, if the orthogonal regressors corresponding to
those principal components have a large correlation with the dependent vari-
able y such deletion is undesirable (experimentally demonstrated in [11]).
There are several different strategies for selecting the appropriate orthog-
onal regressors for the final model (see [2, 12] and ref. therein). In [13]
we considered the Covariance Inflation Criterion [14] for model selection in
KPCR as a novel alternative to methods such as cross-validation.
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2.2.2 Kernel Ridge Regression

KRR is another technique to deal with multicollinearity by assuming the
linear regression model (5) whose solution is now achieved by minimizing

Rrr(ξ, b) =
n

∑

i=1

[yi − f(xi, ξ)]
2 + ϑ‖ξ‖2, (10)

where f(x, ξ) = ξTΦ(x)+b and ϑ is a regularization term. The least-squares
estimate of ξ is biased but the variance is decreased (see e.g.[9]). Similar
to the KPCR case we can express the variance-covariance matrix of the ξ

estimate [2] as

cov(ξ̂) = σ2
M
∑

i=1

λi(λi + ϑ)−2Vi(Vi)T .

We can see, that in contrast to KPCR, the variance reduction in KRR is
achieved by giving less weight to small eigenvalue principal components via
the factor ϑ.

In practice we usually do not know the explicit mapping Φ(.) or its
computation in the high-dimensional feature space F may be numerically
intractable. In [7], using the dual representation of the linear RR model the
authors derived the formula for estimation of the weights ξ for the linear RR
model y = ξTΦ(x) in feature space F ; i.e. (non-linear) KRR. Again, using
the fact that K(x,y) = Φ(x)TΦ(y) we can express the final KRR model in
the dot product form [7, 5]

f(x) = cTk = yT (K+ ϑI)−1k , (11)

where K is again an (n× n) Gram matrix consisting of dot products Kij =
(Φ(xi).Φ(xj)) i, j = 1, . . . , n; k is the vector of dot products of a new
mapped input example Φ(x) and the vectors of the training set; i.e. ki =
(Φ(xi).Φ(x)) and I is an (n×n) identity matrix,. It is worth noting that the
same solution to the RR problem in the feature space F can also be derived
based on the dual representation of Regularization Networks (see e.g. [15])
or through the techniques derived from Gaussian processes [16, 5].

We can see that including a possible bias term into the model leads to
its penalization through the ϑ term. However, in the case of regression
or classification tasks there is no reason to penalize the shift of f(.) by a
constant. To overcome this we can add an extra unpenalized bias term to
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our linear regression model in F . Effectively, it means using a new kernel of
the form

K̂(x,y) = K(x,y) + ϑ0, ϑ0 ∈ R.

Now, the solution will take the form [15, 17, 18]

f(x) =
n

∑

i=1

ciK̂(x,xi)+b̂ =
n

∑

i=1

ci(K(x,xi)+ϑ0)+b̂ =
n

∑

i=1

ciK(x,xi)+b (12)

and the unknown coefficients {ci}
n
i=1, b =

∑n
i=1 ciϑ0 + b̂ can be found by

solving the following system of linear equations [15, 18]

(K̂+ ϑI)c+ 1b̂ = (K+ ϑ011
T + ϑI)c+ 1b̂ = (K+ ϑI)c+ 1b = y,

n
∑

i=1

ci = 0. (13)

where 1 is an (n×1) vector of ones. Thus we still can use a positive definite
kernel K as the only change is to estimate new b term. Recall that the
solution of the SVR, i.e. assuming the linear regression model y = ξTΦ(x)+b
in the feature space F , leads to the non-linear regression model (12). In fact,
in [19] the authors have shown that using the quadratic loss function in the
case of SVR transforms the general quadratic optimization problem [4] for
finding the estimate of the weights ξ =

∑n
i=1 ciΦ(xi) and b to the solution

of the linear equations (13).
Another technique in removing a “bias” term is to “centralize” the regres-

sion problem in feature space; i.e. assume the sample mean of the mapped
data Φ̃(xi) and targets ỹ to be zero. This will lead to the regression prob-

lem ỹ = ξ̃
T
Φ̃(x) without the bias term. The centralization of the individual

mapped data points Φ(x) can be done by the same ”centralization” of the
Gram matrix K and vector k as described in Appendix A. The solution is
then given by modification of (11) to the form

f̃(x) = ỹT (K̃+ ϑI)−1k̃ . (14)

In [11] we observed that both approaches provide the same results.

2.2.3 Summing Up

Using the analogy with PCR and RR in input data space, a connection be-
tween regularized linear regression models in feature space F corresponding
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to KPCR and KRR has been established. Both methods belong to the class
of shrinkage estimators; i.e. they shrink the ordinary least squares solution
from the directions of low data spread to directions of larger data spread.
This effectively means that we can achieve the desired lower variance of the
estimated regression coefficients at the cost of a biased estimate. Whilst
with KPCR we project the data mainly to the principal components corre-
sponding to larger eigenvalues, with KRR we are giving less weight to the
smaller eigenvalues. Thus, in both cases we are faced with a model selection
problem; i.e. selection of non-linear principal components in KPCR and
setting the regularization term ϑ in KRR, respectively. In KPCR one of
the straightforward model selection criteria is based on choosing the first p
principal components describing the predefined amount of overall variance.

Both methods can also be advantageous in noisy environments where the
noise is spread in the eigendirections corresponding to small eigenvalues.
We hypothesize, that in situations where these eigendirections represent
mainly the noisy part of the signal, KPCR can be profitable due to the
data not being projected onto these eigendirections. We discuss the topic of
de-noising by PCA in the next section.

2.3 PCA De-Noising

White additive noise will change the covariance matrix of the investigated
signal by adding a diagonal matrix, with corresponding variances of indi-
vidual noise components on the diagonal. In the case of isotropic noise this
will lead to the same increase of all eigenvalues computed from the clear
signal. If the signal to noise ratio is sufficiently high we can assume that
the noise will mainly affect the directions of the principal components corre-
sponding to smaller eigenvalues. This allows us to discard the finite variance
due to the noise by projection of the data onto the principal components
corresponding to higher eigenvalues. However, a nonlinear transformation
of the measured signal consisting of a signal and additive noise can smear
the noise into certain directions. Thus, discarding the finite variance due to
the noise can lead to a higher loss of the signal information; i.e. we have
to deal with the balance between noise reduction and information loss. We
have investigated this situation in the case of the noisy Mackey-Glass time
series and the nonlinearity Φ(.) induced by using the Gaussian kernel. From
Figure 1 (left) we can see that the noise increases the variance in the direc-
tions with smaller eigenvalues but decreases the variance in the main signal
components. We can infer from this that a more uniform smearing of the
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investigated signal into all directions was induced. Cutting the directions
with the smaller eigenvalues will provide a level of noise reduction, however
loss of information in the main signal direction will also appear.

3 Data Sample Construction

3.1 Chaotic Mackey-Glass Time-Series

The chaotic Mackey-Glass time-series is defined by the differential equation

ds(t)

dt
= −bs(t) + a

s(t− τ)

1 + s(t− τ)10

with a = 0.2, b = 0.1. The data were generated with τ = 17 and using
a second-order Runge-Kutta method with a step size 0.1. Training data is
from t=200 to t=3200 while test data is in the range t= 5000 to 5500. To
this generated time-series we added noise with normal distribution and with
different levels corresponding to ratios of the standard deviation of the noise
and the “clean” Mackey-Glass time-series.

3.2 Human Signal Detection Performance Monitoring

We have used Event Related Potentials (ERPs) and performance data from
an earlier study [20, 21, 22]. Eight (A, B, . . ., H) male Navy technicians
experienced in the operation of display systems performed a signal detection
task. Each technician was trained to a stable level of performance and tested
in multiple blocks of 50–72 trials each on two separate days. Blocks were
separated by 1-minute rest intervals. A set of 1000 trials were performed by
each subject. Inter-trial intervals were of random duration with a mean of 3s
and a range of 2.5–3.5s. The entire experiment was computer-controlled and
performed with a 19-inch color CRT display (Figure 2). Triangular symbols
subtending 42 minutes of arc and of three different luminance contrasts
(0.17, 0.43, or 0.53) were presented parafoveally at a constant eccentricity
of 2 degrees visual angle. One symbol was designated as the target, the other
as the non-target. On some blocks, targets contained a central dot whereas
the non-targets did not. However, the association of symbols to targets
was alternated between blocks to prevent the development of automatic
processing. A single symbol was presented per trial, at a randomly selected
position on a 2-degree annulus. Fixation was monitored with an infrared eye
tracking device. Subjects were required to classify the symbols as targets
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or non-targets using button presses and then to indicate their subjective
confidence on a 3-point scale using a 3-button mouse. Performance was
measured as a linear composite of speed, accuracy, and confidence. A single
measure, PF1, was derived using factor analysis of the performance data for
all subjects, and validated within subjects. The computational formula for
PF1 was

PF1 = 0.33∗Accuracy + 0.53∗Confidence - 0.51∗Reaction Time

using standard scores for accuracy, confidence, and reaction time based on
the mean and variance of their distributions across all subjects. PF1 varied
continuously, being high for fast, accurate, and confident responses and low
for slow, inaccurate, and unconfident responses.

ERPs were recorded from midline frontal, central, and parietal electrodes
(Fz, Cz, and Pz), referred to average mastoids, filtered digitally to a band-
pass of 0.1 to 25 Hz, and decimated to a final sampling rate of 50 Hz. The
prestimulus baseline (200 ms) was adjusted to zero to remove any DC off-
set. Vertical and horizontal electrooculograms (EOG) were also recorded.
Epochs containing artifacts were rejected and EOG-contaminated epochs
were corrected. Furthermore, any trial in which no detection response or
confidence rating was made by a subject was excluded along with the cor-
responding ERP.

Within each block of trials, a running-mean ERP was computed for each
trial (Figure 3). Each running-mean ERP was the average of the ERPs
over a window that included the current trial plus the 9 preceding trials
for a maximum of 10 trials per average. Within this 10-trial window, a
minimum of 7 artifact-free ERPs were required to compute the running-
mean ERP. If fewer than 7 were available, the running mean for that trial
was excluded. Thus each running mean was based on at least 7 but no more
than 10 artifact-free ERPs. This 10-trial window corresponds to about 30s
of task time. The PF1 scores for each trial were also averaged using the
same running-mean window applied to the ERPs, excluding PF1 scores for
trials in which ERPs were rejected. Prior to analysis, the running-mean
ERPs were clipped to extend from time zero (stimulus onset time) to 1500
ms post-stimulus, for a total of 75 time points.
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4 Results

The present work was carried out with Gaussian kernels; K(x,y) = e−(
‖x−y‖2

L
),

where L determines the width of the Gaussian function. The Gaussian kernel
possesses a good smoothness properties (suppression of the higher frequency
components) and in the case we do not have a priori knowledge about the
regression problem we would prefer a smooth estimate [15, 10].

4.1 Chaotic Mackey-Glass Time-Series

On the (noisy) chaotic Mackey-Glass time-series we compared KPCR using
the regressors extracted by Kernel PCA preprocessing with KRR. Both re-
gression models were trained to predict the value at time t+85 from inputs
at time t, t− 6, t− 12, t− 18. The training data partitions were constructed
by moving a ”sliding window” over the 3000 training samples in steps of 500
samples. This window had two sizes - 500 samples and 1000 samples, re-
spectively. This created six partitions of size 500 samples and five partitions
of size 1000 samples. We estimated the variance of the overall clean training
set and, based on this estimate σ̂2 .

= 0.05, we repeated our simulations for
the width L from the range 〈0.2σ̂2, 20σ̂2〉 using the step size 0.01. A fixed
test set of size 500 data points (see Section 3.1) was used in all experiments.
The regularization parameter ϑ in KRR was estimated by cross-validation
using 20% of training data partitions for the validation set. In fact, to find
the value of ϑ, we did the cross-validation in two steps. First the order of
ϑ was estimated and then the finer structure of the values in the range ±1
order was taken to estimate a “optimal” value of ϑ.

The performance of the regression models to predict a ”clean” Mackey-
Glass time series was evaluated in terms of the normalized root mean squared
error (NRMSE). The best results on the test set averaged over all individual
runs are summarized in Table 1. In Figure 4 we also compared the results
on the noisy time series and their dependence on the width L of the Gaus-
sian kernel. Although from Table 1 no significant differences can be noted
between the KPCR and KRR methods, results in Figure 4 suggest that es-
pecially for a lower level of the noise the KPCR method provides slightly
better results with smaller variance over different training data partitions.

A relatively small width L of the Gaussian kernel for which we observed
the best performance of KPCR on test set suggests that for our Mackey-
Glass time-series prediction problem with the Kernel PCA preprocessing
step mainly local correlations of the data points on the attractor are taken
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into account. Increasing the value of L leads to a faster decay of the eigen-
values (see e.g. [23]) and to the potential loss of the ”finer” data structure
due to a smaller number of the nonlinear principal components describing
the same percentage of all the data variance. Increasing levels of the noise
has the tendency to increase the optimal value for the L parameter which
coincides with the intuitive assumption about smearing out the local struc-
ture.

The significant difference between the prediction accuracy on the clean
and on the noisy Mackey-Glass time series gives rise to the question whether
it is at all possible to sufficiently reduce the level of the noise in kernel
space due to the violation of the additive and uncorrelated essence of the
noise introduced by the nonlinear transformation. This may potentially have
a stronger effect on the main principal components (see Figure 1 (left)).
Therefore, we have to deal with the trade off between noise reduction and
the associated signal information loss.

Method n/s=0.0% n/s=11% n/s=22%
500 1000 500 1000 500 1000

KPCR 0.038 0.008 0.307 0.280 0.443 0.414
(0.025) (0.004) (0.030) (0.003) (0.033) (0.010)

KRR 0.038 0.007 0.312 0.279 0.446 0.404
(0.024) (0.003) (0.032) (0.010) (0.036) (0.006)

Table 1: The comparison of the approximation errors (NRMSE) of prediction for
2 different sizes of Mackey-Glass training set. The values represent an average of
6 simulations in the case of 500 training points and 5 simulations in the case of
1000 training points, respectively. Corresponding standard deviation is presented
in parentheses. n/s represents the ratio between the standard deviation of the
added Gaussian noise and the underlying time-series. For KPCR computed on 500
training points we used the first 495, 100 and 50 nonlinear principal components
corresponding to the case of n/s=0.0%, n/s=11% and n/s=22%, respectively. For
KPCR computed on 1000 training points we used the first 750, 125 and 75 nonlinear
principal components.

The solution of the eigenvalue problem (1) can be numerically unstable
when we are dealing with matrix K of higher dimensionality (in our case
1000× 1000). However, on the noisy Mackey-Glass time series we observed
that the best performance of KPCR was achieved using less than 150 main
nonlinear principal components. This simply gives rise to the possibility
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to use the reduced training data set to compute the main eigenvalues and
eigenvectors and simply project the remaining training data points onto the
extracted nonlinear principal components. In following experiments we com-
pared the performance of KPCR when the whole training data set of size
1000 was used to estimate the main nonlinear principal components with
the approach when the principal components were estimated from the first
half of training data set. First, in Figure 1 (right) we compare the main 150
eigenvalues estimated from the first 500 data points with these computed
from the 1000 data points. The small difference between both eigenspectra
suggest that the first half of the training data set can sufficiently describe
the sub-space of the feature space F which is generated by the nonlinear
transformation of the time series. In Table 2 we compare the performance
of both approaches. We cannot observe any significant degradation in per-
formance when the reduced training data set is used to estimate the main
principal components. However, from Table 2 we can also see that reducing
the number of eigenvectors used to 495 in the case of the clean Mackey-Glass
leads to a significant decrease of the overall performance (NRMSE 0.014)
compared to the results in Table 1 where the best performance was achieved
using 750 eigenvectors (NRMSE 0.008). We can conjecture that, although
in the case of clean Mackey-Glass using some of the principal components
corresponding to small eigenvalues may improve the overall performance, by
adding noise to a time series these principal components are negatively af-
fected and we can achieve better results by their removal. However, similar
to the previous discussion this leads to signal information loss.

When extraction of a smaller subspace of the nonlinear principal com-
ponents is desired we can also avoid the problem of direct diagonalization of
the high dimensional Gram matrix K by using the approaches for iterative
estimation of the principal components. In [11] we have successfully used the
expectation maximization approach to Kernel PCA (EMKPCA) [24] which
iteratively estimates only a subspace of the main principal components.

4.2 Human Signal Detection Performance Monitoring

The desired output PF1 was linearly normalized to have a range of 0 to 1. We
trained the models on 50% of the ERPs and tested on the remaining data.
The described results, for each setting of the parameters, are an average of
10 runs each on a different partition of training and testing data. To be
consistent with the previous results reported in [20, 22] the validity of the
models was measured in terms of normalized mean squared error (NMSE)
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Method n/s=0.0% n/s=11% n/s=22%

KPCR1000 0.014 0.280 0.414
(0.005) (0.003) (0.010)

KPCR500 0.017 0.282 0.414
(0.009) (0.005) (0.008)

Table 2: The comparison of the approximation errors (NRMSE) of the KPCR
method using all 1000 training data points (KPCR1000) to estimate eigenvectors
and eigenvalues with the KPCR method where the first half (500) of the training
points was used KPCR500. In the later case, the rest of the training points was
projected onto the estimated eigenvectors. The values represent an average of 5
simulations. Corresponding standard deviation is presented in parentheses. n/s
represents the ratio between the standard deviation of the added Gaussian noise
and the underlying time-series. We used the first 495, 125 and 75 nonlinear princi-
pal components corresponding to the case of n/s=0.0%, n/s=11% and n/s=22%,
respectively.

and in terms of the proportion of data for which PF1 was correctly predicted
with 10% tolerance (test proportion correct (TPC)); i.e ±0.1 in our case.

First, the performance of SVR and KRR methods trained on data pre-
processed by linear PCA (LPCA) in the input space was compared with
the results achieved by using MLSVR and KPCR on features extracted by
Kernel PCA3. In the next step we compared the MLSVR technique trained
on selected nonlinear principal components with the SVR technique trained
on all data points without PCA preprocessing.

We used ε = 0.01, η = 0.01 parameters values for SVR models. In the
case of KRR the regularization term ϑ was estimated by cross-validation us-
ing 20% of training data set as validation set. The same cross-validation
strategy as applied on Mackey-Glass time series was used. The results
achieved on subject A(891 ERPs), C(417 ERPs), D(702 ERPs), F(614 ERPs)
and H(776 ERPs) are depicted in Figures 5–7. From Figures 5 and 6 we
can see consistently better results on features extracted by Kernel PCA on
subjects D and F. These superior results achieved using the Kernel PCA

3Although there exist several approaches for selection of the ”best”subset of principal
components [2], we used the criterion based on the amount of variance described by the
selected principal components. In the case of linear PCA we used the sample covariance
matrix to estimate principal components.
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representation were also observed on the remaining 5 subjects. However,
on subject C the performance with the features selected by linear PCA was
slightly better. In the next step, for individual subjects, we selected the
results for a Gaussian kernel width L on which KRR (with linear PCA pre-
processed data) and KPCR (with Kernel PCA preprocessing) achieved the
minimal NMSE on the test set. In Figure 8 a boxplot with lines at the lower
quartile, median, and upper quartile values and a whisker plot for individual
subjects is depicted. The boxplots suggest the differences between the re-
sults on subjects D to H. Using the sign test and the Wilcoxon matched-pairs
signed-ranks test we tested the hypotheses about the direction and size of
the differences within pairs. On subjects D to H the p-values < 0.03 indicate
the statistically significant difference between the results achieved using lin-
ear PCA and Kernel PCA preprocessing steps. The alternative hypothesis
regarding the superiority of LPCA leads to p-values < 0.02. Although both
tests on subjects A, B and C did not show a statistically significant differ-
ence between the results (p-values between 0.11 and 0.75), the alternative
Wilcoxon test about the superiority of LPCA leads to a higher p-value only
on subject C (A - 0.12, B - 0.25, C - 0.88). Note that on subject C the small-
est number of ERPs is available (417). Figure 8 also indicates the weakest
results with the highest variance over individual runs. This result suggests
that the number of ERPs from this subject were insufficient to model the de-
sired dependencies between ERPs and the subject performance. Moreover,
in this case the dimension of matrix K in the feature space F is lower (209)
than the input dimensionality (225) and we so cannot exploit the advantage
of Kernel PCA to improve overall performance by using more components
in the feature space than the number available in the input space.

In Figure 7 we demonstrate that without the Kernel PCA preprocessing
step in the feature space F we did not increase the overall performance. On
the contrary, on subjects A, B and H the performance using the MLSVR
method was slightly superior. On the remaining subjects the difference was
insignificant. In the case of subject C, where the number of data points is
less than the input dimensionality, SVR provides superior results over any
of the methods considered which utilize Kernel PCA preprocessing.

In the next experiments we compared the SVR, KRR and KPCR meth-
ods on a data set using all eight subjects. We split the overall data set (5594
ERPs) into three different training (2765 ERPs) and testing (2829 ERPs)
data pairs. 20% of the training data set was used for cross-validation to
estimate ε, η and ϑ parameters in SVR and KRR, respectively. In the case
of SVR the direct solution of the quadratic optimization problem to find
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the γ, γ∗ and b coefficients (4) was replaced by using SVMTorch [25] algo-
rithm designed to deal with a large-scale regression problems. In the case of
KPCR the eigenvectors and eigenvalues were estimated using the EMKPCA
approach with 30 EM steps. Based on the results reported in [11] we have
used the 2600 main nonlinear principal components. A Gaussian kernel of
width L = 6000 was used.

Table 3 summarizes the performance of the individual methods. We can
see a slightly better performance achieved with the KPCR and KRR models
in comparison to SVR. Together with the results achieved on individual
subjects, results in Table 3 suggest that on this data set a Gaussian type of
noise is more likely; i.e. the regression models with a quadratic cost function
are preferable.

Method NMSE TPC

KPCR (with EMKPCA) 0.1543 83.28

KRR 0.1546 83.50

SVR (with SVMTorch) 0.1611 82.76

Table 3: The comparison of the NMSE and TPC prediction errors on the test set
for the model based on all subjects ERPs. The values represent an average of 3
different simulations.

5 Conclusions

The Kernel PCA method for feature extraction has been investigated and
the selected features were used in a regression problem. On the performance
monitoring data set, in more than half of the cases, we demonstrated that
the kernel regression methods with a (nonlinear) Kernel PCA preprocessing
step provide significantly superior results over those with data preprocessed
by linear PCA. Only in one case was an indication of the superiority of
linear PCA observed, however, the sufficiency of the data representation in
this case is questionable.

In contrast to [20] where one training (odd-numbered blocks of trials)-
testing (even-numbered blocks of trials) data pair was used, in our study we
created the different training-testing data partitions by random sampling
from all blocks of trials. By using the kernel regression models on these
data partitions we achieved approximately twice the level of improvement
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in terms of TPC. This is a quite significant improvement on this biomedical
application. However, in our future work the same data setting and repre-
sentation (discrete wavelet transforms of ERPs) as reported in [20] will be
used to make more objective conclusions.

Moreover, we have shown that reduction of the overall number of non-
linear principal components can reduce the noise present. Similar to the
investigated Mackey-Glass time series prediction task, this can be exploited
especially in the situation where the low-dimensional input data are spread
in all directions and the noise reduction by projection to a lower number of
linear principal components leads to information loss.

The solution of the eigenvalue problem (1) can be numerically difficult in
the case of a high number of data samples. On the noisy Mackey-Glass time
series we demonstrated that estimation of the main eigenvalues and eigen-
vectors can be sufficient from a smaller data representation. This implies
a possibility to significantly reduce the computation and memory require-
ments and to deal with large-scale regression problems. Moreover, in such
situations methods for the iterative estimation of the eigenvalues can also
be efficiently used [24, 26].

On both data sets, by employing KPCR on the selected nonlinear prin-
cipal components we demonstrated the comparable performance with KRR
and SVR techniques. The computational cost of this approach is comparable
with Kernel PCA as the estimation of the regression coefficients requires a
diagonal matrix inversion of the order p. Moreover, the extracted regressors
are linearly independent which is advantageous for subset selection tech-
niques used in linear regression. Using various strategies (see e.g. [2, 12]
and references therein) for deciding which nonlinear principal components
to delete from the regression model can only improve the performance of
the proposed KPCR model in the feature space F .

Acknowledgments

The authors thank Professor Colin Fyfe for helpful discussions and com-
ments. The first author is funded by a research grant for the project “Objec-
tive Measures of Depth of Anaesthesia”; University of Paisley and Glasgow
Western Infirmary NHS trust, and is partially supported by Slovak Grant
Agency for Science (grants No. 2/5088/00 and No. 00/5305/468). Data
were obtained under a grant from the US Navy Office of Naval Research
(PE60115N), monitored by Joel Davis and Harold Hawkins. Dr. Trejo was

20



supported by the NASA Aerospace Operations Systems Program and by the
NASA Intelligent Systems Program.

References

[1] B. Schölkopf, A. J. Smola, and K. R. Müller. Nonlinear Component Analysis
as a Kernel Eigenvalue Problem. Neural Computation, 10:1299–1319, 1998.

[2] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

[3] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1998.

[4] A. J. Smola and B. Schölkopf. A Tutorial on Support Vector Regression. Tech-
nical Report NC2-TR-1998-030, NeuroColt2 Technical Report Series, 1998.

[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines. Cambridge University Press, 2000.

[6] R. Rosipal, M. Girolami, and J.L. Trejo. Kernel PCA for Feature Extraction
of Event-Related Potentials for Human Signal Detection Performance. In Pro-
ceedings of ANNIMAB-1 Conference, pages 321–326, Götegorg, Sweden, 2000.
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Appendix A

In Section 2.1 we assumed that we are dealing with centralized data Φ(x) in a
feature space. In practical computation, the centralization of the data leads to the
modification of (1) to the form [1]

nλ̃α̃ = K̃α̃, (15)

where the requirement of centralized data Φ(x) was transformed to the change
of K matrix to K̃ = K − 1nK − K1n + 1nK1n where 1n is an (n × n) matrix
of 1/n elements. Similarly we have to change the (nt × n) “test” matrix Ktest

whose elements are Ktest
ij := K(xi,xj) where {xi}

nt

i=1 and {xj}
n
j=1 are testing and

training points, respectively. The centralization of the matrix Ktest is given by
K̃test = Ktest − 1nt

K −Ktest1n + 1nt
K1n where 1nt

is now an (nt × n) matrix
with the same entries 1/n.
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Figure 1: Left: Eigenvalues computed from embedded Mackey-Glass time series
transformed to kernel space. Different levels of noise were added (n/s represents
the ratio between standard deviation of the noise and signal, respectively); n/s=0%
(solid line), n/s=11% (dots), n/s=22% (dash dotted line). Right: Comparison of
the eigenvalues computed from 500 (solid line) and 1000 (dash dotted line) data
samples.
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Figure 2: Display, input device configuration and symbols for task-relevant stimuli
for the signal detection task.
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Figure 3: Running-mean ERPs at sites Fz, Cz and Pz for subject B in the first 50
running-mean ERPs.
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Figure 4: Comparison of the results achieved on the noisy Mackey-Glass time
series with the KPCR (solid) and KRR (dashed) methods. Six different training
sets of size 500 data points were used. The performance for different widths (L) of
the Gaussian kernel is compared in normalized root mean squared error (NRMSE)
terms. Top: n/s=11%. Bottom: n/s=22%. n/s represents the ratio between the
standard deviation of the added Gaussian noise and the underlying time-series.
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Figure 5: Comparison of the results achieved on subjects C, D and F with MLSVR
and SVR on data preprocessed by linear PCA (LPCA + SVR), respectively. In
both cases the principal components describing 99% of variance were used. The
performance for the different widths (L) of the Gaussian kernel is compared in terms
of test proportion correct (TPC) and normalized mean squared error (NMSE).
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Figure 6: Comparison of the results achieved on subjects C, D and F with KPCR
and KRR on data preprocessed by linear PCA (LPCA + KRR), respectively. In
both cases the principal components describing 99% of variance were used. The
performance for the different widths (L) of the Gaussian kernel is compared in terms
of test proportion correct (TPC) and normalized mean squared error (NMSE).
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Figure 7: Comparison of the MLSVR and SVR on subjects A, C and H. 90% of all
nonlinear principal components were used in the case of MLSVR. The performance
for the different widths (L) of the Gaussian kernel is compared in terms of test
proportion correct (TPC) and normalized mean squared error (NMSE).
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Figure 8: Boxplots with lines at the lower quartile, median, and upper quartile
values and whisker plot for subjects A to H. The performance of KRR with LPCA
preprocessing step (left-hand boxplots) is compared with KPCR on data prepro-
cessed by KPCA (right-hand boxplots) in terms of normalized mean squared error
(NMSE). The boxplots are computed on results from 10 different runs using the
widths of the Gaussian kernel on which the methods achieved minimal NMSE on
test set.
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