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Abstract

This paper provides a short introduction to support vector machines and other nonlin-
ear kernel-based methods recently developed in machine learning research. We describe
principles of construction of the nonlinear kernel-based variants of linear methods, which
have been widely used in the domain of chemometrics. These include nonlinear kernel
forms of the partial least squares, canonical correlation analysis, principal component
analysis, principal component regression and ridge regression methods.

1 Introduction

Recently, there has been much interest in the machine learning community in theoretical
and practical developments of kernel-based learning. In this paper we address the utility of
these methods for applications in chemometrics. Strongly rooted in theoretical principles of
statistical learning theory as elaborated by Vapnik [24] and others (see [6, 19] and references
therein), several new classification, regression and unsupervised learning algorithms have
been developed. This includes methodology called support vector machines (SVM), which
have also influenced the construction of other kernel-based methods. As in chemometrics,
kernel-based learning is usually associated with situations where the number of observed
variables is much more greater than the number of observations and high multicollinearity
exists among the variables. This motivated development of nonlinear kernel-based forms
of principal components analysis (PCA), principal components regression (PCR), canonical
correlation analysis (CCA) and ridge regression. A nonlinear kernel form of partial least
squares (PLS) was also proposed [16, 17].

SVM as well as other nonlinear kernel-based methods have been very successfully ap-
plied to many problems coming from different domains of research. A few examples of these
problems are time-series prediction, text categorization, handwritten digit recognition, face
recognition, analysis of electroencephalograms, clustering and classification of microarray gene
expression profiles, and DNA or protein analysis. More examples with detailed references can
be found in [6, 19, 13]. In the domain of chemistry SVM has been used as an alternative mod-
eling tool for classification and regression problems in quantitative structure property/activity
relationships (QSPR/QSAR). Examples of this include studies of pharmaceutical data anal-
ysis and drug design [5, 27]. In [2], the SVM method was used to classify polymers by means
of their mid-infrared spectra.

A common aspect of all of these new algorithms is the principle of nonlinear transfor-
mation of data into a high-dimensional feature space in which linear models are considered.
The models are derived based on a straightforward connection between a reproducing kernel
Hilbert space (RKHS) and the corresponding feature space representation to which the input



data are mapped. In this paper we review basic principles of this approach. We do not
attempt to provide a full detailed description of all described methods but will try to sketch
the main principles of their construction. Where appropriate, we will provide references to
more complete treatment of the methods.

2 RKHS and Kernel Feature Spaces - Basic Definitions

A RKHS is uniquely defined by a positive definite kernel function K(x,y); that is, a symmetric
function of two variables satisfying the conditions of Mercer’s theorem [12, 19]. It follows from
Mercer’s theorem that each positive definite kernel K(x,y) defined on a compact domain
X × X can be written in the eigen-expansion form

K(x,y) =
S

∑

i=1

λiφi(x)φi(y) S ≤ ∞ (1)

where {φi(.)}S
i=1 and {λi > 0}S

i=1 are the eigenfunctions and eigenvalues of the corresponding
integral operator. By rewriting (1) into the form

K(x,y) =
S

∑

i=1

√

λiφi(x)
√

λiφi(y) = 〈Φ(x), Φ(y)〉 = Φ(x)T Φ(y) (2)

it becomes clear that any kernel K(x,y) also corresponds to a canonical (Euclidean) dot
product (here denoted as 〈., .〉) in a high-dimensional space F where the input data are
mapped by

Φ : X → F
x → (

√
λ1φ1(x),

√
λ2φ2(x), . . . ,

√
λSφS(x))

The space F is usually denoted as a feature space and {{
√

λiφi(x)}S
i=1,x ∈ X} are referred to

as feature mappings. The replacement of a canonical dot product by a kernel function (2) is
usually called the ”kernel trick” and it makes any algorithm depending only on a dot product
between its input data computationally tractable even for very high-dimensional spaces F .

To help understand the idea of kernel functions and application of the kernel trick we use
the simple and often considered example of the mapping (see Fig. 1)

Φ : X = R2 → F = R3

x = (x1, x2) → Φ(x) = (x2
1,
√

2x1x2, x
2
2)

(3)

Now, we consider a dot product between two mappings Φ(x) and Φ(y) in F

〈Φ(x), Φ(y)〉 = (x2
1,
√

2x1x2, x
2
2)

T (y2
1,
√

2y1y2, y
2
2)

= ((x1, x2)
T (y1, y2))

2

= 〈x,y〉2

where K(x,y) = 〈x,y〉2 is second order polynomial kernel function. Polynomial kernel func-
tions K(x,y) = 〈x,y〉d are then a simple extension of the proposed idea by considering
mapping of the original data to a feature space of all monomials of dth order. Another ker-

nel function widely used in practice is the Gaussian kernel K(x,y) = exp (−‖x−y‖2

2σ2 ), where
σ > 0 determines the width of the Gaussian function. Different kernel functions have been
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Figure 1: An example of transformation of a nonlinear classification problem with an ellipsoidal
decision boundary (left) to a problem where a linear hyperplane can be used to separate two classes
(right). Two classes are defined by circles and crosses, respectively. The original 2D data (left) were
transformed into a 3D space (right) using the nonlinear mapping (3).

also used and constructed [6, 19]. Interestingly, a linear kernel K(x,y) = 〈x,y〉 = xTy is also
an admissible kernel function. Thus, the linear kernel PCA and linear kernel PLS methods
[31, 14], previously developed to reduce computational costs in the case where number of
input data dimensions (number of features, predictor variables) significantly exceeds number
of observed samples, can be considered to belong to the framework of kernel-based learning.

The idea of the kernel trick was used in [4, 24] to construct a nonlinear SVM classifier. In
the next section we start with a description of SVM for classification and regression, which
significantly motivated development of other nonlinear kernel-based methods described later
in the paper.

3 Support Vector Machines

In this section we provide a brief overview of the main principles used in the construction of
SVM. In our description of SVM we skip several technical details. Readers interested in the
theory of SVM can find detailed derivations in [24, 6, 19, 21, 25].

3.1 Classification

The construction of linear SVM for classification (SVC) of two classes of data has been
motivated by the geometric idea of creating a separating hyperplane maximizing the margin;
that is, the minimal distance of any data point to the hyperplane. Consider a set of training
data {xi}n

i=1 ∈ X ⊆ RJ with a corresponding set of labels {yi}n
i=1 ∈ {−1, 1} indicating

assignment to one of two classes. We consider the separating hyperplane in a dot product
space X

〈w,x〉 + b = 0

and the corresponding decision function

f(x) = sgn(〈w,x〉 + b)



where w ∈ X is a vector of weights and b ∈ R is an intercept. Further, we consider so-called
canonical representation of the separating hyperplane; that is, the form where w and b are
rescaled such that the points closest to the hyperplane satisfy |〈w,x〉 + b| = 1 (see Fig. 2).
Now, to construct the separating hyperplane maximizing the margin 1/‖w‖ we have to solve

minw,b
1

2
‖w‖2

subject to yi(〈w,xi〉 + b) ≥ 1, i = 1, . . . , n
(4)

in which using the concept of Lagrange multipliers and primal-dual forms results in a quadratic
optimization problem with the consequent final solution

f(x) = sgn(
n

∑

i=1

yiαi〈xi,x〉 + b) (5)

where αi ≥ 0 are Lagrange multipliers. The data points xi for which αi 6= 0 are called the
support vectors and they fully define the final decision function f(x). Moreover, similar to
(5) the final quadratic optimization problem which has to be solved to obtain {αi}n

i=1 can be
expressed in terms of the dot product 〈xi,xj〉 between the training data. A direct extension
of SVC into its nonlinear form is provided by substituting Φ(xi) ∈ F for each xi ∈ X and
considering a kernel function K(xi,xj) = 〈Φ(xi), Φ(xj)〉. This implies considering the decision
function f(x) = sgn(〈w, Φ(x)〉+ b) and solving for a linear SVC model in a feature space F .
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Figure 2: A binary classification problem: the decision boundary (separating hyperplane) {x ∈
X |〈w,x〉+ b = 0} is shown as a solid line. We consider the weight vector w and b to be rescaled such
that the points closest to the hyperplane satisfy |〈w,x〉 + b| = 1. The margin (the distance of the
closest point to the hyperplane) is then equal to 1/‖w‖. The picture was adapted from [19].

Until now we have considered the case where both classes are linearly separable without
errors; that is, so-called hard-margin classification. However, the separating hyperplane may
not exist where there is overlap between the classes. Under these conditions to obtain a good
generalization of SVC we need to allow some training errors. This can be done by introducing
slack variables. Considering a nonlinear SVC model, we can reformulate the problem (4) into

minw,b
1

2
‖w‖2 + C

∑n
i=1 ξi

subject to yi(〈w, Φ(xi)〉 + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n
(6)



where the constant C > 0 determines the trade-off between margin maximization and training
error minimization. Similar to the previous hard-margin classification case, the final solution
is of the form (5) and αi ≥ 0 can be obtained by solving a quadratic optimization problem.
Interestingly, to obtain a solution of (6) we can consider the optimization problem [26]

min
w,b

n
∑

i=1

[1 − yi(〈w, Φ(xi)〉 + b)]+ + η‖w‖2 (7)

which represents a familiar regularized paradigm of function estimation. The first term, where
the subscript “+” indicates positive part, represents the loss function. This loss function is
usually called hinge loss and it represents a reasonable choice of loss in the case of two-class
classification. The second part of (7) is the penalty term with a penalization coefficient η.
This formulation of SVC provides us a direct connection to SVM for regression (SVR).

3.2 Regression

Generally, the SVR problem can be defined as the determination of a function f(x) which
approximates an unknown desired regression function and has the form

f(x) = 〈ω, Φ(x)〉 + b

where similar to the classification case b is an unknown bias term and ω ∈ F is a vector of
unknown coefficients. The problem of estimating unknown parameters ω and b can be similar
to (7) formulated through the minimization of the regularized risk functional

min
ω,b

n
∑

i=1

V (yi, f(xi)) + η‖ω‖2 (8)

where V (.) is a loss function. The nature of the regression problem differs from the classifi-
cation in the sense that {yi}n

i=1 now represents continuous output values and loss functions
with the argument of the form (yi − f(xi)) are usually considered. The choice of different
loss functions in relation to a particular noise distribution was intensively studied by Huber
and gave rise to the so-called robust regression [10]. Motivated by this result, for the class
of densities “close” to the uniform distribution, Vapnik [23] introduced a ε-insensitive loss
function of the form

V (y, f(x)) = |y − f(x)|ε =

{

0 : |y − f(x)| ≤ ε
|y − f(x)| − ε : otherwise

and the notion of SVR is usually associated with this type of loss function. It has been shown
that the regression estimate that minimizes (8) with ε-insensitive loss has the form

f(x) =
n

∑

i=1

(γ∗
i − γi)K(xi,x) + b (9)

where {γi, γ
∗
i }n

i=1 are Lagrange multipliers given by the solution of a corresponding quadratic
optimization problem [24, 19].

The quadratic loss function V (yi, f(xi)) = (yi − f(xi))
2 is also widely used in practice. In

this case the regression estimate is of the form

f(x) =
n

∑

i=1

aiK(xi,x) + b



The unknown parameters a and b are given by the solution of the linear equations

(K + ηIn)a + 1b = y

1Ta = 0

where K represents the (n × n) Gram matrix (or kernel matrix) of the cross dot products
between all mapped input data points {Φ(xi)}n

i=1; that is, Kij = K(xi,xj) where K(., .) is a
selected kernel function. In is an n-dimensional identity matrix and 1n represents a (n × 1)
vector with elements equal to one.

This regression model is known as kernel ridge regression [18], however the same regression
model can be derived through the methodology of regularization networks [8, 7] or Gaussian
processes [29, 6].

4 Nonlinear Kernel-Based PLS

We consider a general setting of the linear partial least squares (PLS) algorithm to model the
relations between two data sets (blocks of observed variables). As in the previous settings we
consider {x}n

i=1 ∈ X ⊆ RJ to be a set of J-dimensional vectors drawn from the first block of
data. We also consider {y}n

i=1 ∈ Y ⊆ RM to be a set of M -dimensional vectors drawn from
the second set. PLS models the relations between these two blocks in terms of score vectors.
Observing n data samples from each block of variables, PLS decomposes the (n × J) matrix
of zero-mean variables X and the (n × M) matrix of zero-mean variables Y into the form

X = TPT + F

Y = UQT + G

where the T, U are (n × p) matrices of the extracted p score vectors (components, latent
vectors), the (J × p) matrix P and the (M × p) matrix Q represent matrices of loadings and
the (n × J) matrix F and the (n × M) matrix G are the matrices of residuals. The PLS
method finds weight vectors w, c such that

max|r|=|s|=1[cov(Xr,Ys)]2 = [cov(Xw,Yc)]2 = [cov(t,u)]2

where cov(t,u) = tTu/n denotes the sample covariance between the score vectors t and u.
The nonlinear kernel PLS method is based on mapping the original input data into a high-
dimensional feature space F . In this case the vectors w and c cannot usually be computed.
However, Höskuldsson [9] has shown that the score vectors t can be directly estimated as the
first eigenvector of the following eigenvalue problem

XXTYYT t = λt (10)

The Y-scores u are then estimated as

u = YYT t (11)

As in the construction of SVM, we consider a nonlinear transformation of x into a feature
space F . Effectively this extension represents the construction of a linear PLS model in F .
We denote by Φ the (n×S) matrix of mapped X -space data {Φ(xi)}n

i=1 into an S-dimensional
feature space F and we write

K = ΦΦT



where K denotes the previously defined Gram matrix. Similarly, we can consider a mapping
of the second set of variables y into a feature space F1. We denote by Ψ the (n×S1) matrix
of mapped Y-space data {Ψ(yi)}n

i=1 into an S1-dimensional feature space F1. Analogous to
K we define the (n × n) Gram matrix K1

K1 = ΨΨT

given by the kernel function K1(., .). Using this notation we reformulate the estimates of t

(10) and u (11) into the corresponding nonlinear kernel variants

KK1t = λt

u = K1t
(12)

As for linear PLS we assume a zero-mean nonlinear kernel PLS. To centralize the mapped
data in a feature space F without explicit computation of Φ we can use the following procedure
[20, 16]

K ← (In − 1

n
1n1

T
n )K(In − 1

n
1n1

T
n ) (13)

The same is true for K1.
After the extraction of new score vectors t,u the matrices K and K1 are deflated by

subtracting their rank-one approximations based on t and u. The different forms of deflation
correspond to different forms of PLS (see [28] for a review). Here we discuss PLS1 (one of
the blocks has single variable) and PLS2 (both blocks are multidimensional) generally used
as regression methods. The deflations in the cases of PLS1 and PLS2 are based on rank-one
reduction of the input and output space matrices using the new extracted score vector t at
each step. This is described in the next section.

4.1 Regression

In the case of regression the data set Y represents a set of dependent output variables. In
this scenario there is no reason to nonlinearly map y variables into a feature space F1. This
simply means that K1 = YYT and F1 is the original Y ⊆ RM space. In agreement with the
standard linear PLS model we assume that the score vectors {ti}p

i=1
are good predictors of

Y. Further, we also assume a linear inner relation between the score vectors t and u.
Taking into account the normalized score vectors {ti}p

i=1
the estimate of the PLS regression

model in F is defined as [16]

Ŷ = KU(TTKU)−1TTY = TTTY (14)

It is worth noting that different scalings of the individual Y-score vectors {ui}
p
i=1

do not
influence this estimate. The deflation of the Φ matrix using a new extracted score vector t

at each step has to be reformulated into its kernel form [16]

K ← (In − ttT )K(In − ttT )

This deflation is based on the fact that the Φ matrix is decomposed as Φ ← Φ − tpT =
Φ − ttTΦ, where p is the vector of loadings corresponding to the extracted score vector t.
The deflation of the Y matrix is given by Y ← Y − tcT = Y − ttTY.



Denote dm = U(TTKU)−1TTym , m = 1, . . . , M where the (n× 1) vector ym represents
the mth output variable. Then, for the mth output variable, we can write the solution of the
kernel PLS regression (14) as

ŷm =
n

∑

i=1

dm
i K(xi,x)

which agrees with the solution of the regularized form of regression in RKHS given by the
Representer theorem [25]. Using equation (14) we can also interpret the kernel PLS model as
a linear regression model of the form

ŷm = cm
1 t1(x) + cm

2 t2(x) + . . . + cm
p tp(x) =

p
∑

i=1

cm
i ti(x)

where {ti(x)}p
i=1

are the projections of the data point x onto the extracted p score vectors
and cm = TTym is the vector of weights for the mth regression model.

4.2 Classification

In the case of classification we consider the outputs Y to be an indicator matrix coding
individual g classes with different labels representing class membership

Y =













1n1
0n1

. . . 0n1

0n2
1n2

. . . 0n2

...
...

. . . 1ng−1

0ng
0ng

. . . 0ng













where {ni}g
i=1

denotes the number of samples in each class,
∑g

i=1
ni = n and 0ni

is a (ni × 1)
vector of all zeros. A close connection between CCA, Fisher’s linear discriminant analysis
(LDA) and PLS, was recently shown by Barker and Rayens [1]. This motivates us to use
the orthonormalized PLS method for discrimination. The kernel variant of this approach
transforms (12) into the following equations

KY(YTY)−1YT t = KỸỸT t = λt

u = ỸỸT t

where Ỹ = Y(YTY)−1/2 represents a matrix of uncorrelated and normalized original out-
put variables. The use of this modified kernel PLS method is motivated by the fact that
KY(YTY)−1YT represents the among-classes sum-of-squares matrix [1]. Thus, unlike prin-
cipal component analysis (PCA), which has previously served as a dimension reduction step
for discrimination problems, orthonormalized PLS extracts score vectors possessing informa-
tion about the distribution of class centers. In the final classification step we can consider
SVC or other methods for classification (for example, LDA, logistic regression) to be applied
on extracted kernel PLS score vectors [17].

5 Other Nonlinear Kernel-Based Methods

From the construction of SVM, it is straightforward to derive the nonlinear kernel variants of
PCA, PCR and CCA. In this section we briefly review the main principles of these methods.



5.1 Kernel PCA, Multi-layer SVM and Kernel PCR

The PCA problem in high-dimensional feature space F can be formulated as the diagonal-
ization of an n-sample estimate of the covariance matrix

Ĉ =
1

n

n
∑

i=1

Φ(xi)Φ(xi)
T

where again {Φ(xi)}n
i=1 are centered nonlinear mappings of the input variables {xi}n

i=1 ∈
X ⊆ RJ (we use the same Gram matrix centralization (13)). The diagonalization represents
a transformation of the original data to new coordinates defined by orthogonal eigenvectors V.
We have to find eigenvalues λ ≥ 0 and non-zero eigenvectors V ∈ F satisfying the eigenvalue
equation

λV = ĈV

Using the fact that all solutions V with λ 6= 0 lie in the span of mappings Φ(x1), . . . ,Φ(xn),
we can derive the equivalent eigenvalue problem [20] (the linear, kernel form of PCA was
described in [31])

nλv = Kv

where v denotes the column vector (sometimes called dual vector) with coefficients v1, . . . , vn

such that

V =
n

∑

i=1

viΦ(xi)

Normalizing the solutions Vk corresponding to the non-zero eigenvalues λk of the matrix K,
translates into the condition λk〈vk,vk〉 = 1 [20]. Finally, we can compute the kth nonlinear
principal component of x as the projection of Φ(x) onto the eigenvector Vk

β(x)k = 〈Vk, Φ(x)〉 =
n

∑

i=1

vk
i K(xi,x) (15)

We then select the first p < n nonlinear principal components, for example, the directions
which describe a desired percentage of data variance, and thus work in the p-dimensional sub-
space of feature space F . This allows us to construct multi-layer support vector machines
[20], where a preprocessing layer extracts features for the next regression or classification
task. Combining the kernel PCA preprocessing step with SVC yields to multi-layer SVC in
the following form [20, 15]

f(x) = sgn(
n

∑

i=1

yiαiK1(β(xi), β(x)) + b)

where components of vectors β are defined by (15). Using the SVR form (9) we can similarly
define multi-layer SVR

f(x) =
n

∑

i=1

(γ∗
i − γi)K1(β(xi), β(x)) + b

In general, we try to select an appropriate mapping of the input data to F with the aim
of “linearizing” the considered regression or classification problem. This simply suggests we



consider a linear kernel K1(x,y) = 〈x,y〉. We are thus performing linear SVR or SVC on the
p-dimensional sub-space of F .

In the case of Gaussian noise the best approximation to the regression provides a least
squares method with the quadratic loss function. Considering this loss function and using the
first p nonlinear principal components (15) we can construct a nonlinear kernel-based analog
of the linear PCR model. This kernel PCR model is then defined as [15]

f(x) =
p

∑

k=1

wkβ(x)k + b =
p

∑

k=1

wk

n
∑

i=1

vk
i K(xi,x) + b =

n
∑

i=1

eiK(xi,x) + b

where the weight vector w = (w1, . . . , wp)
T is the ordinary least squares solution to the

regression problem with the predictor variables β(x) = (β(x)1, . . . , β(x)p)
T and where {ei =

∑p
k=1

wkα
k
i }n

i=1.

5.2 Kernel CCA

CCA is a method of relating two or more sets of variables using the existing relations among
the sets. We consider, as in the PLS case, two data sets represented by the zero-mean data
matrices X and Y of the size (n × J) and (n × M), respectively. In the case of M = 1, the
CCA method reduces to the usual ordinary least squares regression. For M > 1, in contrast
to the PLS2 method, there is no assumption of causal asymmetry in CCA. In this sense
CCA is more closely related to the Mode A PLS method developed for modeling the relation
phenomena between different sets of variables rather then for prediction [30, 28]. CCA finds
a pair of linear transformations of each block of data with maximal correlation coefficient.
This can be formally described as the maximization problem

max|r|=|s|=1[corr(Xr,Ys)]2 = [corr(Xa,Yb)]2 = [cov(Xa,Yb)]2/[var(Xa)var(Yb)]

where as in our previous notation the symbols corr and var denote the sample correlation
and variance, respectively. Estimates of the weight vectors a and b are given as the solutions
of the following eigenvalue problems [11]

(XTX)−1XTY(YTY)−1YTXa = λa , (YTY)−1YTX(XTX)−1XTYb = λb

where the eigenvalues λ corresponds to the squared canonical correlation coefficient. As in
the PCA and PLS methods the weight vectors a and b lie in the span of the observed samples
of a particular space. In this case we can write a = XT α and b = YT β, where α, β are
dual vectors (weights). This allows us to formulate a kernel form of regularized CCA which
is based on the solution of the following eigenproblems [3, 22]

(XXT + ηIn)−1YYT (YYT + ηIn)−1XXT α = λα

(YYT + ηIn)−1XXT (XXT + ηIn)−1YYT β = λβ (16)

where η > 0 represents a regularization term. The regularization is also a necessary step in
the case where a dimension of the data space exceeds the number of samples and we need to
deal with the singular sample estimates of the particular covariance matrices [3]. In the case
of M = 1, the regularized CCA method is equivalent to ridge regression.

Finally, we consider nonlinear kernel mappings of the original data into features spaces
F and F1. We obtain the nonlinear kernel CCA method by replacing the XXT and YYT

matrices in (16) with the corresponding centralized Gram matrices K and K1, respectively.
The centralization is again given by (13).



6 Conclusions

We summarized the construction of support vector machines and several related nonlinear
kernel-based learning methods. For each method—SVM, kernel PLS, kernel PCA, kernel
PCR, kernel ridge regression and kernel CCA—we described the main theoretical principles so
as to provide guidance into this research area for readers unfamiliar with these developments.
We also explained the close connections among all of these methods.

We focused our attention on the nonlinear kernel-based extensions of several regression
and classification methods widely used in the domain of chemistry and chemometrics. These
extensions may be very useful in the case where nonlinear relations between sets of data exist.
If nonlinear relations cannot be adequately approximated using linear models, the nonlinear
kernel-based methods offer a means to provide more precise results; for example, in the sense
of prediction accuracy or lower classification errors. However, there is also a potential draw-
back associated with these new approaches—loss of interpretability. The interpretation of the
final kernel models constructed in a feature space may become difficult with respect to the
original, observed data. This remains an open area for further research which should profit
from merging research in the machine learning and chemometrics communities.
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