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Abstract
Objective: The conventional application of intracranial pressure (ICP)  
monitoring of traumatic brain injury (TBI) patients consists merely in the 
acquisition of ICP values in discrete time and their comparison to the established 
ICP threshold. An exceeding of this threshold triggers a special emergency 
treatment protocol. This paper addresses the possibility of making use of the 
rich information latent in the ICP records of known vital and fatal outcomes 
gathered during real clinical practice of treating TBI patients. Our assumption 
was that the proposed algorithmic procedure derived from this information 
could, in addition to ICP monitoring itself, provide a complementary added 
value. This might help clinicians to make better decisions during a patient’s 
treatment. Approach: We concentrated on studying specific clustering 
schemes for subsequences of ICP time series. The clusterization problem 
was formulated for feature vectors which are introduced to represent ICP 
time subsequences. The ICP transformation to a feature space uses global 
and local definitions of time subsequences. For clusterization itself, we 
adopted hierarchical Gaussian mixture models (hGMMs). By using posterior 
probabilities of the clusters, we introduced three novel alarm functions. We 
explored two alternative methods of searching for optimum alarm function 
thresholds (ROC analysis and a novel efficiency measure). Main results: We 
performed extensive cross-validation experiments on a clinical retrospective 
data set. The results of the optimization over several hGMMs, various feature 
space dimensionality and all the types of the novel alarm functions show the 
potential of the novel alarm functions for supplementing conventional ICP 
monitoring. Significance: In conclusion, the paper provides a prospective 
extended ICP monitoring technique for real TBI patients, based on the 
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proposed methodology of ICP subsequence clustering and thresholding of the 
optimum novel alarm function.

Keywords: intracranial pressure (ICP) measurement, ICP time-series, ICP 
feature clustering, Gaussian mixture model, alarm functions

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Overview of some ICP monitoring methods

According to the findings of the United States Centers for Disease Control and Prevention, each 
year about 1.5 million people sustain traumatic brain injury (TBI). Approximately 800 000 
receive early outpatient care in the USA. Of that number, 50 000 patients die and another 
85 000 people suffer various long-term disabilities including cognitive deficits. Unfortunately, 
brain injuries do not heal like injuries to any other part of the body. Before medical knowl-
edge and technology advanced to control breathing using automatic respirators and decrease 
intracranial pressure (ICP), the death rate from TBI was very high. To reduce the mortality and 
morbidity rate of patients with severe TBI, much effort has been devoted by physicians and 
medical organizations to search for a remedy to this situation. To help medical practitioners, 
several different systems of input diagnosis of the symptoms of TBI have been introduced 
(Teasdale and Jennett 1964). The most popular and practical application at the admission of 
patients with TBI at hospitals is achieved by using the so-called Glasgow coma scale (GCS) 
(Teasdale and Jennett 1964) or the Glasgow outcome scale (GOS) (Marmarou et al 1991).

In critical care medicine (mainly intensive care units—ICUs), the severe TBI associated 
with the GCS score of 3–8 (within the scale of 1–15 points) has become a major challeng-
ing problem. Based on progress achieved in this area, the Brain Trauma Foundation (BTF) 
published the first official guidelines on the management of severe TBI in 1996 (Bullock et al 
1996). The latest fourth edition was published in 2016 by Carney et al (2017). The European 
Brain Injury Consortium has published similar guidelines (Maas et al 1997). A number of 
studies and papers have reported the significant impact of implementation of the guideline-
based protocols for severe TBI patients’ treatment and outcome (e.g. Vukic et  al (1999), 
Palmer et al (2001), Hesdorffer et al (2002), Fakhry et al (2004) and Arabi et al (2010)). 
In addition, in Eastern European countries the positive influence of the practical application 
of the Guidelines on reduction in mortality and morbidity of TBI patients was confirmed in 
Vukic et al (1999).

TBI is characterized by two discrete periods: primary and secondary brain injury. The 
primary brain injury occurs during a traumatic event at an accident scene resulting in the 
physical damage of brain tissues and vessels. Neurological damage invoked by these danger-
ous conditions may not occur immediately at the moment of primary injury, but evolves over 
time as a secondary injury. This is the result of a complex process, following the primary 
brain injury in the ensuing hours or days. Secondary intracranial brain insults include cerebral 
edema, hematomas, cerebral venous outflow obstruction and disturbances in cerebrospinal 
fluid (CSF) circulation, and it is the leading cause of in-hospital deaths after brain trauma. The 
secondary brain injury is directly associated with the increase of ICP and subsequent decrease 
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in cerebral perfusion that brings about brain tissue ischaemia. Patients with severe TBI have a 
significant risk of hypotension, hypoxaemia and brain swelling. The incidence of raised ICP 
in these patients has been reported at over 50% (Marshall et al 1979, Narayan et al 1982) and 
therefore such patients are suitable for routine ICP monitoring.

ICP is a robust predictor of outcome from TBI and threshold values for treatment are rec-
ommended based on this evidence (Marmarou et al 1991). ICP is measured in millimetres of 
mercury (mmHg) and, at rest, normally varies between 7–15 mmHg for adults. The range of 
20–40 mmHg represents the upper limit of the ICP normality, namely, the ICP value of 22 
mmHg is generally considered to be the critical (life-threatening) ICP level threshold Thr 
(Mathew 2005, Carney et al 2016).

Marmarou et  al (1991) demonstrated the strongest association between the outcome, 
measured by the GCS and ICP equal to 20 mmHg that was generally accepted threshold at 
which interventions should started. Although ICP represents a global diagnostic measure that 
cannot identify the specific mechanisms of pressure elevation, subsequent neuromonitoring 
and assessment of cerebral autoregulation may help to individualize treatment of severe TBI 
patients. The guidelines for the management of severe TBI (Bullock and Povlishock 2007, 
Carney et al 2016) recommend that ICP should be monitored in all salvageable patients with 
a severe TBI with abnormal computed tomography (CT), or normal CT scan, if the patient is 
over 40 years old, has motor posturing or systolic blood pressure (BP) <90 mmHg. Regarding 
the ICP monitoring, there has been no novel additional information on ICP waveforms struc-
tures or statistical characteristics up to now. It should be noted, that the conventional applica-
tion of ICP monitoring (in accordance with the mentioned Guidelines) consists merely in the 
utilization of the discrete mean ICP values calculated over agreed periods of time (hours, as 
a rule) and decision on triggering of the necessary intervention procedures is made only by 
comparing the actual mean value to the ICP threshold Thr; sometimes the duration of the state 
when ICP is over the threshold Thr is also considered. In Ghajar (2000) the first experiences 
with applications of the abovementioned guidelines on treating TBI patients in practice was 
summarized.

Particular attention has been devoted to regular ICP monitoring and to the succeeding treat-
ment that had increased the likelihood of a favourable outcome. Mathew (2005) systemized 
important evidences of indication of the benefit of ICP monitoring to the patient. He remarked 
that in addition to the actual number of ICP alone, the utility of the ICP waveforms should 
be a subject of further research activities. His conclusion was as follows: ‘Admittedly the 
process of ICP measuring is not as easy or risk-free as the measurement of mean arterial pres-
sure (MAP), but with indications and techniques for ICP measurement becoming increasingly 
refined, exposure of patients to the risk of undertreatment or unnecessary empirical treatment 
of raised ICP is not an acceptable solution’. In the review article of Chesnut et al (2014), a 
well-systemized review is provided that focuses on the influence of the ICP monitor-based 
management on outcome in TBI. The authors assert that observational data supports the opin-
ion that the ICP management has the potential to influence outcome, particularly when care 
is targeted and individualized and supplemented with data from other clinical examinations 
and imaging.

In their retrospective study (Balestreri et al 2004), the authors focused attention on severe 
TBI patients with ICP continuously above 25 mmHg for more than 4 hours and defined spe-
cific patterns for physiological variables. Although systemic hypotension is considered as one 
of the major factors resulting in secondary ischaemic injury, the authors could not find a 
significant difference in the mean values and time trends of ICP between the two outcome 
categories, namely, for 39 patients with favourable outcome and 57 patients with fatal out-
come. Recently, a topical comparative review was published Zhang et al (2017) on measuring 
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ICP. They performed a comprehensive literature review on how to measure ICP invasively 
and noninvasively. In the review, the extreme importance of ICP measuring for patients with 
severe TBI was again demonstrated.

We encountered two papers which dealt with clusterization of the ICP signal. The authors 
of Lee et al (2016) addressed extraction of morphological landmarks, as peaks, troughs, and 
flats, and proposed a specific peak clustering. The second paper of Novak et al (2004) presents 
a clustering algorithm based on continuous hidden Markov models (HMMs) to automatically 
classify ICP beats based on their morphology. Both papers use the signal domain of ICP and 
did not use feature representation of the ICP signal in a vector space with vectors constituted 
by the whole retrospective ICP signals (records), neither did they use any Gaussian mixed 
model approach for clustering the vectors in the vector space. No suggestions of the construc-
tion of an additional alarm function based on such clustering was presented in the papers. 
Thus the motivation of our research was to propose novel alarm functions based on an original 
feature vector space clusterization derived from the ICP retrospective records.

The main goal of the research for our retrospective study of ICP records—provided kindly 
from the archive of the Lorenz Böhler Unfallkrankenhaus Wien, Vienna, Austria—was as follows:

 • to extend the existing emergency indicator for severe TBI cases, that is given by the 
detection of the instant ICP value greater than the allowed ICP threshold, by a novel 
alarm function; this function should reflect a deeper information inherent in already 
available (retrospective) clinical ICP data, in particular, this information is hidden in ICP 
subsequences of time series (TS) by which vital and fatal ICP records can be represented.

This goal comprises the following particular subgoals, namely, to explore possibilities of 
transformation of the ICP time series to a feature vector space in which various clusters can 
be utilized for the definition of novel alarm functions; applicability of a hierarchical Gaussian 
mixture models (hGMMs) to the feature vector space with the aim to develop a specific ICP 
signals clustering scheme; alternative alarm functions, based on values of the individual pos-
terior probability functions for feature vectors, calculated for instant ICP values; and possible 
thresholds of alarm functions and their optimization on the basis of the receiver operating 
characteristic (ROC), or using a specific efficiency measure.

In order to provide the interested reader by additional useful, but not essential informa-
tion, some complementary considerations related to motivation, data description and details 
on methodology of sliding window principle applied to clusterization of time series, disputed 
by Keogh and Lin (2005), have been moved to the supplementary material (stacks.iop.org/
PM/38/2015/mmedia).

We would like to emphasize that our paper reports the results of our basic research in the 
field of emergency medicine oriented towards monitoring and treating patients with severe 
brain injuries. As such, it represents an attempt to extend the methodological and mathemati-
cal aspects of contemporary approaches and proposes several novel solutions. However, at this 
point of research it cannot serve for direct application to clinical practice.

1.2. Methodological basis of our research and its main elements

Since in the case of ICP recorded during hospitalization of patients with severe TBI, any 
planning of experiments is fundamentally excluded, the only possibility of exploring the inter-
nal regularities of the ICP records is to perform a so-called retrospective study with all the 
data available. Then, each ICP record (for vital or fatal patients) can be regarded as a time 
series (TS) and we can propose an appropriate clustering scheme based on a Gaussian mixture 
model of a set of the ICP TS data.
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Although we could define a conventional task of supervised classification of ICP TS, our 
task differs essentially in the purpose of final utilization of alarm functions constructed on the 
basis of the ICP TS clustering. Mainly, we are interested in two questions: whether we could 
make use of a priori existing complex information about the entire set of the ICP records of 
vital and fatal cases, and whether it provides useful auxiliary information on the danger state 
of a patient at any time moment of his/her ICP monitoring. The idea is that such a type of 
information could extend the common protocol of identification of the ICP threshold overrun 
by relevant decision that precedes such a moment.

In figure 1 the overall structure of our research activities is depicted. Some details can be 
explained more precisely:

Figure 1. The scheme of the individual methodological steps used in our research.
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 • generation of the feature vectors for all subsequences defined for each ICP record that 
results in a feature vector subset of the multi-dimensional vector space, whereby any 
feature vector is accompanied by a label of the subsequence origin (a vital or fatal patient) 
(section 2.4); 

 • for clusterization of feature vector data we propose to use the hierarchical Gaussian 
mixture model (hGMM) (MingLiu et  al 2002), i.e. clusters are searched as Gaussian 
clusters—separately for data originated from vital and fatal records (section 2.5); 

 • the obtained parameters of the hGMM model are afterwards used for calculation of the 
corresponding posterior probabilities: (i) first, within the cross-validation framework we 
select a testing ICP record, (ii) then, for any time moment of this record, we calculate the 
feature vectors of the subsequence associated with this moment, (iii) finally, we calculate 
the posterior probabilities of the given feature vector with regard to the clusters found 
within the obtained hGMM model (section 2.5); 

 • the ultimate element of our research methodology consists of searching for an appropriate 
‘alarm’ time function that would be derived from the mentioned posterior probabilities 
(section 2.6); 

 • besides this basic methodology, an additional problem of searching for an optimum 
value of the threshold to which a novel alarm function should be compared at every time 
moment had to be solved. For this task, we used the whole set of the ICP data again, and 
developed two alternative approaches: (1) a special ROC analysis for all possible alarm 
function thresholds, (2) a measure of the alarm function efficiency with regards to the 
conventional ICP (zero) alarm function has been proposed (section 2.7).

It should be pointed out that all the above depicted steps within section 2 are applied in paral-
lel to subsequences of an ICP record which are defined for time support of two kinds: global 
and local.

2. Methods

2.1. Input ICP data characterization

ICP data were recorded for patients with severe TBI admitted to the ICU of the Lorenz Böhler 
Unfallkrankenhaus Wien hospital. For our study, a set of clinical records of ICP for 45 severe 
TBI patients in the period of maximally 10 d were available. Within these data, 30 records 
belonged to surviving patients who were discharged from the ICU in a stabilized state and 15 
records related to deceased patients. From all the patients, data from three fatal and two vital 
subjects were excluded, because of their extreme shortness (less than 70 h) for our analysis 
to be advisable. For each patient, there is a label of his/her state (fatal or vital) assessed at the 
time he/she left the ICU. Time resolution of the data was hours, similarly as in research studies 
published in Marmarou et al (1991), and Jun-Yu-Fan et al (2010). Altogether, 5575 h instances 
for the ICP records of vital patients (survived outcomes), as well as 2006 h instances for the 
ICP records of fatal patients (deceased outcomes) were accepted. Due to various clinical limi-
tations, the ICP recording was performed as non-overlapping 1 h intervals characterized by 
maximum values within these intervals. The maxima represented the discretized version of 
an ICP record (sequence of time series). The starting time of the ICP recording, in relation to 
the moment of the TBI episode, varied for individual patients. For the surviving patients, the 
maximum duration of the ICP measurement was set to 10 d (represented by 240 h instants). 
The clinical protocol has led to occasional discontinuities in the ICP recording caused by 
the necessity to disconnect the patient for the period of the examination at another clinical 
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department. The reparation of all missing ICP values has been made by linear interpolation 
of data. Most of the gaps with missing points represent only isolated points. The gaps with 
three and more adjacent missing points occupy 5% of all time instants (5575) for survived 
(vital) and 7.3% of all time instants (2006) for non-survived (fatal) patients. In the following 
in table 1 the data on demographics and several diagnostic characteristics of the patients stud-
ied are summarized. The patient data are reported separately for survivors and non-survivors.

2.2. Statistic of input ICP data with regard to theoretical thresholds

Whereas it can be assumed that in all cases included in the retrospective data set the ICP 
threshold Thr= 20 mmHg has been used for triggering the special medical intervention pro-
cedure, an image of the relations between the acquired ICP values and the various critical 
(life-threatening) ICP values, was of our interest. Namely, for each individual ICP record from 

Table 1. The demographics and accompanying characteristics of all the available 
patients included in the retrospective study. In the table, there are six rows in which 
the data of various diagnostic trauma score are contained. The listed numbers represent 
mean values evaluated for all patients within the given category, while the numbers 
listed in the parentheses represent the standard deviation of the corresponding score.

Survivors Non-survivors

Characteristic No. of patients (%) (total  =  28) No. of patients (%) (total  =  12)

Women (%) 6 (21%) 2 (17%)
Age in years 
(range)

39.4 (17–93) 58.1 (20–82)

22×SBT/spinal trauma 9×SBT/spinal trauma
Trauma type 5×polytrauma 3×polytrauma

1×skelet trauma
GCS 3–4 8 (29%) 8 (67%)
GCS 5–6 8 (29%) 1 (8%)
GCS 7–9 12 (43%) 3 (25%)
APACHE II 20.8 (4.5) 15.7 (4.8)
score
APACHE II 27.9 (16.4) 17 (10.2)
mortality
SAPS II 54.3 (9.6) 39.9 (10.7)
score
SAPS II 54.8 (19.6) 28.3 (17.9)
mortality
ISS 32.8 (13.3) 31.3 (10.3)
TRISS 40.8 (25) 71.7 (24.9)
survived
% of missing 5 % 7.3 %
time pointsa

% of monitoring 14 % (0 - 67) 41 % (0–93)
time above
20 mmHg 
(range)

a the precise specification is given at the beginning of section 2.1.
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Figure 2. The proportions of the ICP values in individual ICP records which are over 
the fixed critical ICP thresholds Thr (5 mmHg steps were used for the abscissa). The 
averaged values over the fatal cases and vital cases have been calculated separately.

the retrospective study, we were interested in a proportion of the ICP values, acquired for the 
given record, which exceeded the variable ICP critical value Thr∈ {0, 5, 10, 15, 20, . . . , 60}, 
to other ICP values. Two plots of such proportions averaged over the whole set of fatal or vital 
records, respectively, are depicted in figure 2.

The overall trend of decreasing proportions seen in figure 2 for both types of records is 
in accordance with our intuition. However, the number of ICP values above critical values, 
beginning at the indicator threshold Thr= 20 up to the value 50 mmHg, confirm that in reality 
many TBI patients survived with significantly increased ICP values, though this proportion 
continually decreases. In vital cases, no values above the 50 mmHg occur. On the other hand, 
we can see that in spite of triggering the intervention procedure by the same threshold value 
Thr= 20, the proportion of the ICP values over a critical level is high in all fatal records. In 
more detail, e.g. for the critical value Thr= 25 mmHg, the proportion of the ICP values greater 
than this threshold, which are present in fatal cases, equals 0.28, while the proportion calcu-
lated for the vital cases equals only to 0.09. This fact serves as further motivation to search for 
a more complex indicator derived from the ICP record ensemble that could trigger the inter-
vention procedure earlier than the ICP threshold itself. Considering the differences of the ICP 
proportions over Thr between vital and fatal cases, we see that the maximum of this quantity 
is reached exactly for the used threshold Thr= 20 mmHg.

2.3. Input ICP data characterization based on ROC analysis for the conventional ICP  
threshold Thr value

There are a number of papers dealing with the ICP monitoring of TBI patients using ROC 
analysis to solve various tasks. Chambers et al (2001) applied this standard statistical tool 
to explore whether there are significant threshold levels in the determination of outcome and 
whether the quantity of ICP is a better predictive outcome than the quantity of CPP. Using 
ROC curves, the authors found out, that the threshold value of ICPmax = 35 mmHg and the 
threshold value for CPPmin = 55 mmHg appear to be the best predictors in adults. In the 
paper of Steyerberg et al (2008), ROC was used to explore a prognostic model that combined 
age, motor score and pupillary reactivity. An area under the ROC curve (AUC) between 0.66 
and 0.84 was achieved at cross-validation. Guiza et al (2015) investigated the relationship 
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of episo des of elevated ICP above a certain threshold during a certain time with a 6 month 
Glasgow outcome scale by means of visualization in a colour-coded plot. However, to the best 
of our knowledge, no relevant information is available in the literature that is related exactly 
to the ROC analysis of the conventional criterion of ICP(k) > Thr . Therefore, we decided, 
to carry out the ROC analysis of the zero-alarm function, i.e. all ICP records from the retro-
spective data set were considered. For the ICP threshold values Thrv for v = 1, 2, . . . , 10, we 
selected the following set of ICP integer values (mmHg): {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} 
which, for completeness, span the extremum ICP values, though they are out of the clinically 
permitted range. In this situation, the vital and fatal cases, as well as prediction outcomes are 
associated with the values of ICP(k) for all the individual indices k encountered in the set of 
ICP records.

In figure 3 the ROC curve, obtained for all the ICP values and the range of the selected 
thresholds, is plotted. It should be pointed out that the threshold Thr= 19.9 was found as the 
optimum via the ROC analysis (with YI= 0.19) and it coincides with the lower boundary of 
the interval〈20, 40〉 mmHg considered in the guideline-based protocols of Fakhry et al (2004), 
and Arabi et  al (2010). According to Mathew (2005), the most-accepted ICP threshold is  
20 mmHg. In the clinical study of Honda et al (2017), published quite recently, in which ICP 
monitoring was accompanied by parallel-acquired CT neuroimaging and perfusion study, the 
same value of ICP threshold is recommended.

Let us recall the definition of the basic notions of the ROC analysis adjusted for our 
situation. The sensitivity is defined as the proportion: 

∑
true positive predictions/ 

∑
con-

dition  positives. Here we interpret the denominator as the overall sum of the cases of the 
ICP(k) (k-time instant) values associated with all the available fatal records. Although the 
fatal records are known only in the retrospective view, we can consider all evolving patient 
states during his/her hospitalization, specified by the ICP(k) values, as ‘life threatening’ that 
represents for us the notion of the variable condition positives. The nominator represents, 
on the other hand, the number of all cases of the ICP(k) selected from the fatal records for 
which the relation ICP(k) > Thr is valid. Then, the sensitivity (= 0.33) value found by ROC  

Figure 3. The ROC plot calculated for the retrospective data and a set of the ICP 
thresholds Thr. The Youden index (YI= 0.19) is displayed as the red vertical line 
segment, the corresponding value of sensitivity is 0.33 and of specificity is 0.86. The 
optimal ICP threshold associated with the Youden index is Thr= 19.9.
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(retrospective) analysis for the available ICP data can be interpreted such that in 33% of cases, 
the relation ICP(k) > Thr indicated a life-threatening patient state and the medical interven-
tion was triggered or has been continued. On the other hand, it can be claimed that, in 67% 
of the cases selected from the fatal records, the state of the patient in the given moment was 
life-threatening, but the relation ICP(k) � Thr did not indicate it and therefore no medical 
intervention could be triggered on an ICP-only basis. The introduction of a novel alarm func-
tion that could help to indicate critical patient states also in these cases is a basic motivation 
of our research. The position of such a novel alarm function to the conventional ICP versus 
Thr indicator should not therefore be seen as its opponent, but on the contrary, it should be a 
suitable complementary emergency indicator.

2.4. Representation of the ICP original data by means of vector features

Based on state-of-the-art ICP monitoring of TBI patients and taking into account the results of 
the detailed statistical analysis of the available ICP data included in the previous section, we 
concluded that a further advanced technique of ICP monitoring analysis should provide rel-
evant information for any moment of ICP measurement of an actual patient. This could serve 
as an impulse (alarm) for triggering additional medical intervention applicable to the patient. 
To reflect the complex shape of the ICP records, we propose to represent ICP time segments 
by globally and locally computed vector features. Namely, under the global characterization 
of the evolving ICP record we mean the transformation of the ICP values into vector features 
defined on a discrete time support N.1 given by all time moments from the beginning up to 
its instant time. Thereby we want to utilize the entire history of the ICP TS up to the given 
moment. By using the local information we understand a shorter time segment of ICP, ending 
again at the instant ICP value, for which the same type of the feature vector is calculated (the 
only methodological difference consists of a different time support). It should be noted, that 
in view of the critical claim of Keogh and Lin (2005) related to the useless application of the 
sliding window principle to time series clusterization, by transition from the ICP time series 
to a vector feature characterization we avoid the situation described and analysed by authors. 
Then,

 • the first type of the support (N.1) is derived from the time series Tn = (x1, x2, . . . , xn) with 
components xi equal to ICP values measured at the subsequent discrete time moments 
with the identical beginning and variable length k; i.e. we write the corresponding ICP 
subsequence as Sk = (x1, x2, . . . , xk), where k  =  12, 13, ..., n �240; the value 12 was 
empirically set as a minimum subsequence length, for which the individual (global) 
features acquire yet reasonable values and which could also be clinically relevant; while 
the value 240 was found to be a convenient fixed length of the ICP records available in 
our study; 

 • the second type of support (denoted N.2) is given as the latest s time samples for which 
the ICP subsequence is written as Lk−s = (xk−s+1, . . . xk−1, xk), where we select s = 12, 
as an appropriate value; the features calculated for these cases are called local; 

 • similarly as in Kuncheva and Rodriguez (2013), we define 2m appropriate feature vectors 
for each ICP record subsequence given by individual supports N.1 and N.2.

For each subsequence Sk  and Lk−s of the whole ICP sequence Tn, we define the global and 
local sets of the following seven features: f j

k , ( j = 1, . . . , 7):
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 1. Maximum value:
f 1
k = maxi=1,...,k {xi} ,

 2. Mean value:

f 2
k = 1/k

k∑
i=1

xi = xk,

 3. Standard deviation:

f 3
k =

√√√√1/(k − 1)
k∑

i=1

(xi − xk)2,

 4. Covariance coefficient (Kuncheva and Rodriguez 2013):

f 4
k = 1/k

k∑
i=1

(i. x − xk. (k/2)),

 5. Coefficient derived from the ICP absolute differences along the segment:

f 5
k = 1/(k − 1)

k−1∑
i=1

|xi+1 − xi|,

 6. Autocorrelation coefficient of t-order (t = [k/2]):

f 6
k =

k−t∑
i=1

(xi − xk)(xi+t − xk)/

k−t∑
i=1

(xi − xk).

 7. Instant ICP value:

f 7
k = xk.

The latter feature, as can be seen, is nothing more than a simple ICP value for the time instant 
k that does not depend on any time segment, i.e. it is a pure point characteristic. Thus, our experi-
ments can be related to a maximum seven-dimensional feature space. As will be described later, 
some combinations of the defined vector features of lesser dimension m will be selected.

2.5. ICP feature vector clusterization using the hierarchical Gaussian mixture models 
(hGMM)

A number of clustering schemes have been developed (e.g. Jain (2010), Fu (2011) and Gama 
(2012)) in the domain of machine learning and data mining. One prominent branch of meth-
ods is known as distribution (density)-based clustering, within which, the GMMs (Bishop 
2006) have been used extensively in various application fields. These semi-parametric estima-
tion techniques represent a very general class of functions for the density model in which it 
is possible to increase a number of adaptive parameters in a systematic way. Thus the GMM 
can be made arbitrarily flexible and it fits clustering tasks like ours very well. Let us recall the 
basic formulation of the GMM. It is defined as a weighted sum of M components multivariate 
Gaussian densities given by the equation:

p(x | λ) =
M∑

i=1

wig(x | µi,Σi) ,
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where x is a D-dimensional random variable (feature vector), wi, i = 1, . . . , M, are the mix-
ture weights and g(x | µi,Σi),i = 1, . . . , M, represents Gaussian distribution densities with 
means µi and covariance matrices Σi . The clustering of the data in D-dimensional feature 
vector space can then be viewed as searching for an optimum GMM with fixed number of 
components M (corresponding to the fixed number of data clusters). The solution of such an 
optimization problem is carried out by finding the unknown parameters λ = {wi,µi,Σi}, for 
i = 1, . . . , M. As will be shown later, this parametrization of the clustering task will serve as 
an appropriate tool for the construction of an alarm function by means of posterior probability 
functions for a new input feature vector data of the ICP subsequence.

In the previous section we proposed representing the ICP TS by feature vectors which are 
defined for global support and for local support. Thus our basic clusterization task needs to 
be split into two independent GMMs. As the applications of these models are identical, we 
will describe the formalism only for one such model. Next, to combine these two GMMs, we 
propose to apply the so-called hierarchical Gaussian mixed model (hGMM) (e.g. in MingLiu 
et al (2002)) with various numbers M of components. As this clustering task is of a supervised 
type, the hGMM enables straightforward labelling of clusters, or posterior probabilities of 
an input feature vector. The basic scheme of our implementation of the supervised hGMM 
to the D-dimensional feature vector space can be described as follows. First, we consider a 
class decomposition of the set of all feature vectors calculated for the entire ICP data set: let 
CV  denote the class of all feature vectors xV associated with the ICP records for vital patients, 
and let CF  denote the class of all feature vectors xF associated with the ICP records for fatal 
patients; let M represent the same number of GMM components for modelling the vital as well 
as fatal data. Then within the overall hGMM scheme, we formulate two parallel GMM tasks. 
The formal notation for the vital case can be written as

pV(xV | λV) =

M∑
i=1

wV
i g(xV | µV

i ,ΣV
i ) ,

and similarly we define the GMM for the fatal case

pF(xF | λF) =

M∑
i=1

wF
i g(xF | µF

i ,ΣF
i ) .

Having found two separate GMMs we can construct a final mixture considering the second 
level of the hierarchy that can be expressed as a weighted mixture of the two first level hier-
archy GMMs:

p(x | λ) = qVpV(xV |λV) + qFpF(xF|λF) .

In our approach we estimate the weighting coefficients (priors) qV and qF directly from 
the given data. The ratio of the number of feature vectors calculated for fatal and vital 
patient records in the retrospective data set is r = NF : NV = 1 : 3.2, (where NF and NV  
denote the number of fatal and vital feature vectors, respectively), from which we obtain the 
weights qF = 1/4.2 = 0.24, and qV = 3.2/4.2 = 0.76, preserving the condition qV + qF = 1. 
Secondly, we have to ensure that the values of 2M posterior probabilities for an arbitrary input 
vector x sum up to the value one. We achieve this by using the normalizing coefficient 
NORM(x) for our hGMM, comprising 2M Gaussian densities from the first level of hierarchy, 

and calculating 2M posterior probabilities for any vector x for i = 1, 2, . . .M :

pV
i (w

V
i gV

i |x) =
qV

NORM(x) wV
i gV

i (x), pF
i (w

F
i gF

i |x) =
qF

NORM(x) wF
i gF

i (x),

M Teplan et alPhysiol. Meas. 38 (2017) 2015



2027

where the coefficient NORM(x) is defined as

NORM(x) = qV
M∑

i=1

wV
i gV

i (x) + qF
M∑

i=1

wF
i gF

i (x) .

Next, recall that two sets of features are considered, representing local and global ICP 
properties. Each set is modelled by its own hGMM. In this study we consider two ways of 
combining hGMMs calculated for the global support and local support. (i) First, up to the nor-
malization step for posterior probabilities we estimate parameters of each hGMM in parallel; 
then to accomplish the last step of mixing two hGMMs we use the following formula:

NORML
G(x) = qV [vG(

M∑
i=1

wV
i gV

i (x))G + vL(

M∑
i=1

wV
i gV

i (x))L]

+qF[vG(

M∑
i=1

wF
i gF

i (x))G + vL(

M∑
i=1

wF
i gF

i (x))L],

where the symbol G stands for Global, and the symbol L for Local support; the all global 
and local posterior probabilities (vital and fatal) can be in this case weighted by additional 
weights vG and vL. (ii) Second, according to the above described normalization procedure of 
hGMM we can calculate posterior probabilities for global and local support separately. Then 
we propose to combine pairs of the corresponding posterior probabilities from global and 
local branches of the hGMM procedure as a linear combination. After evaluating pilot experi-
ments with both approaches, we preferred the latter approach.

2.6. Introduction of novel alternative alarm functions

2.6.1. Research methodology. For any of the selected number 2M of clusters, the solution of 
the hGMM problem provides the full description (parameters values) of the Gaussian clusters. 
These parameters, together with the selection of M posterior probabilities for fatal clusters only, 
constitute initial characteristics (an imprint) of the whole data set at hand. All this information can 
then be used for the calculation of auxiliary functions F∗(k), V∗(k) which can be used afterwards 
to calculate the value of the selected alarm function Alj(k) for the actual ICP(k) value acquired 
in the instant k for the given patient. To carry out a systematic exploration of the behaviour of the 
proposed alternative alarm functions and accompanying operations, it was necessary to propose 
a cross-validation scheme. For N = 40 valid ICP records (of those, 12 were fatal cases and 28 
were vital cases) we repeatedly detached one record that was stored for testing purposes. The 
remaining 39 records are used as input data for solving the individual hGMM task for the chosen 
number of clusters. Having obtained a full description of the clusters it is possible to look at each 
testing ICP record as a fictively evolving ICP record and for each index k calculate all quantities 
defined for the ICP segments (ICP time subsequences up to the index k) which are necessary for 
obtaining the value of the alarm function Alj(k). In the following section we will propose three 
alternative alarm functions, each coupled with its own threshold TAj . The optimum values of 
these thresholds will be searched (i) by means of the corresponding ROC analysis, that includes 
the values of the given alarm function for each time index k, and, alternatively, and (ii) by means 
of the optim ization of certain efficiency measures of the proposed alarm functions.

2.6.2. Design of alternative alarm functions. Let us recall that the coupling of the information 
represented by a time-dependent ICP record with the information on an a priori established 
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threshold Thr, and evaluating their mutual relation with the evolving ICP discrete time record, 
serves in contemporary medicine as a basic tool for triggering a necessary medical interven-
tion. Thus it is natural to call the ICP record itself a zero-alarm function and denote it as 
Al0(k) = ICP(k). In particular, the most important moment (ALARM) for treating patients 
with severe TBI is represented by the time instant when the value ICP(k) crosses the threshold 
value Thr for the first time in any ICP time subsequence of ascending values. At this very 
moment a sequence of specific medical measures (according to the guideline-based proto-
cols of Fakhry et  al (2004), and Arabi et  al (2010)) starts. The ICP monitoring continues 
with increased attention. For this online case, it is natural to interpret all the subsequent ICP 
values over the threshold as an indication of persisting state of emergency for the patient. Of 
course, the dynamics of the ICP time curve, as well as medical supervision of other medical 
parameters of the patient, can serve as feedback and to control the intervention process alone. 
All these aspects represent relevant issues of specific medical research, however, these were 
beyond the scope of our research project related exclusively to the ICP retrospective study. At 
the time moment, when the ICP(k) drops below the threshold Thr, the emergency level can be 
weakened. Monitoring of the ICP(k) curve continues under stabilized conditions (and prob-
ably aborted intervention actions) up to the possible next ALARM.

All preceding considerations are concerned equally with the concept of the application of 
novel alarm functions to the ICP monitoring process. However, in our research project, a new 
problem of finding the optimum threshold level of each individual alarm function arises. In 
our situation, the ICP records (and consequently the values of the alarm functions) are defined 
as posterior curves for the whole definition range. Then for searching for optimum thresholds, 
we can consider any individual value of an alarm function separately. For the corre sponding 
optimization procedure we make a theoretical assumption that each alarm function value 
exceeding the variable threshold can be a possible first indication of an ALARM in a future 
application in the actual case of patient ICP monitoring. In other words, within this optim-
ization problem, we deem an arbitrary alarm value exceeding the threshold equally important.

For all the ICP records included in the retrospective study, we will introduce and explore 
three alarm functions Alj(k) for j = 1, 2, 3 which will be based on the proposed methodology 
of feature space clusterization using hGMMs. These functions will differ from each other by 
their local or cumulative nature and by the general or selective application to an ICP record. 
The prerequisite of the definition of all these functions is the construction of auxiliary func-
tions using the corresponding posterior probabilities calculated from the obtained hGMM 
for the given feature values of the evolving ICP record in each time instant. Let us suppose 
we have found Gaussian clusters in the feature vector space calculated for the known ICP 
records of the given data set. Then, for any given subsequence xk  (that represents the instant 
state of an evolving ICP record in time, indexed by the symbol k = 12, 13, ..., n � 240), the 
posterior probability of the given ICP feature vector related to the fatal cluster CF

i  is denoted 
as pF

i (k | xk), and the posterior probability of the given ICP feature vector related to the vital 
cluster CV

i  is denoted as pV
i (k | xk), where i = 1, . . . , M .

Finally, the values of the auxiliary function F∗(k) for the given subsequence xk  are defined 
using the following formula:

F∗(k) =
∑

i for fatal

pF
i (k),

and similarly, the auxiliary function V∗(k) is defined as

V∗(k) =
∑

i for vital

pV
i (k),
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where, for the sake of simplicity, we omitted the symbol of the feature vector xk . It should 
be noted that within the framework of hGMM the equality F∗(k) + V∗(k) = 1 is always true.

As formulated in our basic methodology, we wish to evaluate the value of the alarm func-
tion at any discrete time of the evolving ICP record of the monitored patient, based on all 
previous values of the auxiliary function from this single ICP record, up to the index k. The 
obtained value Alj(k) can be interpreted as a measure of danger in which the monitored patient 
finds him or herself at the moment k. It is compared to the threshold alarm value (a constant 
TAj  for the whole alarm function range) aimed at triggering a special medical intervention pro-
cedure. Thus the relation Alj(k)> TAj should be tested for the subsequent values of the index 
k. Intuitively, the most important cases (indices k) in practice are when this relation is valid for 
the first time in each subsequence of the ascending values of any alarm function. However, for 
theoretical purposes we need to consider also the states of lasting danger, i.e. all subsequent 
time instants when the relation Alj(k)> TAj is still valid. For the reflecting such patient states, 
we define the following mutually alternative alarm functions for all indices k available in the 
given ICP record, where the attributes are related to the time moments:

 1. The local alarm function Al1(k):

Al1(k) = F∗ (k).

 2. The selective cumulative index alarm function Al2(k):

Al2(k) = 1/k
i=1,...,k∑

F∗(i)>V∗(i)

i.

 3. The selective cumulative alarm function Al3(k):

Al3(k) = 1/k
i=1,...,k∑

F∗(i)>V∗(i)

F∗(i).

2.7. Optimization of the thresholds for novel alarm functions

In this section the main goal is to propose a suitable characterization of various alarm states 
in monitoring ICP by means of the retrospective information on ultimate outcomes of medi-
cal treatment of the patients included, and by utilization of the three novel alarm functions 
together with their optimum thresholds. It appeared that for such a characterization, the meth-
odology analogous to measures of medical diagnosis accuracy based on ROC can be used effi-
ciently. Originally, the ROC curve shows the characteristics of a diagnostic test by graphing 
the false-positive rate (1-specificity) on the horizontal axis and the true-positive rate (sensitiv-
ity) on the vertical axis for various cut-off values. A useful diagnostic test should have a cut-
off value at which the true-positive rate is high and the false-positive rate is low. In medical 
practice, searching for an optimal threshold point from the ROC curve (the best cut-off point) 
(Fawcett 2006, Indrayan 2013) represents the important diagnostic task.

In our study, the evidence of vital or fatal patient outcomes is seen as analogous with actual 
values (of binary classification into healthy or sick person class), whereas the states (for each 
time instant k) when the particular alarm function exceeds the given threshold or it does not, 
serves as analogous with the prediction outcomes (positive or negative) of medical diagnostic 
tests. For use in the monitoring procedure of TBI patients, finding the best cut-off point on 
the ROC curve means that we have found the threshold value of the particular alarm function 
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that is optimal in the described sense. As we indicated in section 2.6.1, each individual alarm 
function needs its own optimum threshold. For searching for the optimum threshold values, 
we proposed two approaches: first, the direct application of the ROC methodology has been 
developed and evaluated; second, we proposed and explored novel suitable measures for 
alarm function efficiency which make use of specific ROC-like characteristics of the ICP data. 
Details of both methods are described in the following sections.

2.7.1. Determination of the optimum thresholds TAopt
j  for the proposed alarm functions via the 

corresponding ROC analysis. The critical value of any of the novel alarm functions Alj(k), 
which have different and more complex methodological nature than the quantity of ICP, could 
be derived from the values of the alarm functions calculated for all data using the cross-
validation scheme. Since in our case a priori information on vital/fatal type of the patient 
ICP record is available, it is possible to calculate a contingency table of actual values and test 
(prediction) outcomes. We proposed to perform the ROC analysis by including discrete values 
of the threshold TAj , originating from the whole ranges of the corresponding alarm functions 
Alj(k) calculated for all available patient ICP records and for all k time arguments. We will 
describe this procedure in detail.

For the given type of hGMM, and for hypothetical threshold values TAj(i), i = 1, 2, . . . , NTAj, 
TAj(i) ∈< min Alj, max Alj > of the selected alarm function Alj(k), one step of the cross-val-
idation scheme is performed for each patient p. Then, we calculate the values of the alarm 
function Al p

j (k) for the given patient and for all available values of the time instant k. After 
completing the cross-validation scheme for all patients (fatal as well as vital) p = 1, 2, . . . , 40, 
we obtain values of all alarm functions Al p

j (k). Afterwards the corresponding quantities of 
the ROC analysis are calculated separately for the fatal and vital patient ICP records and the 
corre sponding alarm functions according to the formulae:

Fatal records: for all p and k:

 • True positive (TP)  =  # (Al p
j (k) >TAj)

 • False negative (FN)  =  # (Al p
j (k) �TAj).

Vital records: for all p and k:

 • False positive (FP)  =  # (Al p
j (k) >TAj)

 • True negative (TN)  =  # (Al p
j (k) �TAj).

Based on a preliminary exploration we found out that the selection of all seven basic features 
defined in section 2.4 do not represent the best decision for our task. Therefore we decided to 
experiment with a reduced set of these features. Namely, we considered the following three 
feature vectors H3D = ( f 2

k , f 3
k , f 5

k ), H4D = ( f 2
k , f 3

k , f 4
k , f 5

k ), and H5D = ( f 2
k , f 3

k , f 4
k , f 5

k , f 7
k ). The 

ROC analysis for the whole available data set can be described in the following way.
For each given threshold value TAj(i), and for all values of the alarm functions Al p

j (k), 
and for all patients p and the corresponding time indices k we calculated the values TP and 
FN (from fatal records), and the values FP and TN (from vital records). We obtained unique 
values of sensitivity (Se) and specificity (Sp) characterizing the whole dataset. Consequently, 
for NTAj pairs of these quantities, we obtained the NTAj values of the ROC curve cut-off points 
with the coordinates [x, y] = [(1 − Sp), Se]. According to the standard ROC technique, the goal 
is to find the best cut-off from the ROC curve. We applied the frequently used Youden index 
(YI) that maximizes the vertical distance from the line of equality (diagonal line in ROC) to 
the points [x, y] of the curve plot. The Youden index maximizes the difference between the TP 
rate (Se) and the FP rate (1 − Sp).
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2.7.2. Determination of the optimum thresholds TAj  for the proposed alarm functions using a 
suitable efficiency measure. The efficiency of a novel alarm function, in relation to the exist-
ing ICP alarm, could be characterized by measures which are also suitable for determining an 

optimum thresholds TAopt
j  of the proposed alarm functions. For such an alternative to the basic 

ROC approach we need to introduce the following terms. Having selected an alarm function 
Al p

j (k), calculated for the pth patient, and the variable threshold value TAj  for the pth patient, 
given the variable threshold Thrv for the whole ICP record of this patient, we can consider 
the time instant k when the condition ICP p(k)> Thrv becomes true for the first time in any 
ascending ICP value subsequence as the conventionally justified moment for triggering the 
initial alarm. Similarly, the moment of the satisfaction of the condition Al p

j (k) >TAj  can be 
designated to be a suitable moment for triggering a novel alarm. The periods of time includ-
ing the very first moments and the following time points with lasting valid conditions can be 
called ‘conventional alarm active’ in the former case, and ‘novel alarm active’ in the latter. For 
the index subsequences when the abovementioned conditions are not valid, we introduce the 
terms ‘conventional alarm passive’ and ‘novel alarm passive’.

Let us consider a hypothetic situation that for clinicians, besides the information on the 
conventional alarm active, also the information on the novel alarm active is available for each 
time instant k in the given ICP record. Then, using the above introduced terms and the retro-
spective view we get four specific sets of indices k:

 (i) E p
Alj  =  {k : (Al p

j (k) > TAopt
j )& (ICP p(k)� Thrv)}—union of all exclusive novel alarm 

active subsequences ( N p
Alj  =  # E p

Alj),

 (ii) E p
ICP  =  {k : (ICP p(k) > Thrv)& (Al p

j (k) � TAopt
j )}—union of all exclusive conventional 

alarm active subsequences ( N p
ICP  =  # E p

ICP),

 (iii) A p
Alj&ICP   =  {k : (Al p

j (k) > TAopt
j )& (ICP p(k)> Thrv)}—subsequences when both alarms 

are simultaneously active ( M p
Alj  =  # A p

Alj&ICP),

 (iv) P p
Alj&ICP   =  {k : (Al p

j (k) � TAopt
j )& (ICP p(k)� Thrv)}—subsequences when both 

alarms are simultaneously passive ( M p
Pj  =  # P p

Alj&ICP).

Also in this case it is reasonable to search for optimum thresholds of the alarm functions 
by using the information contained in the whole dataset. It means that the definition of the 
efficiency measure requires extension of the above-introduced quantities to all patients. Once 
the cross-validation process is finished and the values of the jth alarm function are available 
for all time arguments k, the following sets can be defined:

 (i) EAlj  =  
⋃

p E p
Alj ,

 (ii) EICP  =  
⋃

p E p
ICP  ,

 (iii) AAlj&ICP   =  
⋃

p A p
Alj&ICP ,

 (iv) PAlj&ICP   =  
⋃

p P p
Alj&ICP .

Consequently, we obtain the total number of the subsequence positions related to the corre-
sponding sets defined above: NAlj  =  # EAlj =

∑
p N

p
Alj, NICP  =  # EICP =

∑
p N

p
ICP,  MAlj  =  # 

AAlj&ICP =
∑

p M
p

Alj, MPj  =  # PAlj&ICP =
∑

p M
p

Pj.
Let us consider now only the subset of the fatal patient records. We can say that in spite of 

the treatment activities following the moments of conventional alarm activation, the individual 
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patient ultimately deceased. This means that all time indices with ICP alarm active can be 
considered technically as deficient in fatal outcomes. Therefore we can hypothesize that the 

presence of an ICP subsequence with the exclusive novel alarm active (we denote the num-

ber of all these incidences as Nfat
Alj) could have helped clinicians to make earlier decision on 

triggering medical intervention, which could have possibly increased the patients survival 
chances. On the other side, in cases when both alarms are simultaneously active, related to 
retrospective fatal records, there is clearly no benefit of the novel alarm.

Now, let us consider the subset of the vital patient ICP records. We can affirm that during 
the ICP monitoring, no additional successful ICP-based alarms were applied (this does not 
exclude application of the other types of medical alarms, based, e.g. on checking biochemical 
parameters). Further, there are certainly some vital patients for whom the conventional alarms 
were triggered, but it is impossible to identify which of them actually had life-saving effects. 
For research purposes, we can employ a more rigorous approach and consider all index sub-
sequences for the exclusive novel alarms active to be purely redundant (‘false’) alarms for the 

vital patients. The number of all the incidences in this case is denoted as Nvit
Alj.

Having these two different views on the sets of fatal and vital ICP records, we can ask 
how to construct an alternative (to the ROC) optimization procedure that can yield optimum 
thresholds of the individual alarm functions for (ad hoc) indication of the alarm situation of 
the patients included in the retrospective study. We would like to trade-off these two opposite 
indications and therefore we propose a measure µr as the following proportion:

µr(Thr, TAj) =
Nfat

Alj

Nvit
Alj

.

For the already fixed threshold Thr of the ICP values we have a freedom to set the threshold 
values for each alarm function within its range. The optimum threshold TAj  can be found as 
such a value for which the measure µr( ) reached the maximum for all variable parameters, 
similar to the case of the ROC optimization approach.

3. Results

We ran computer experiments organized as a set of cross-validation computations in which the 
‘one-leave-out’ scheme was applied sequentially to the ICP record of each patient. As variable 
parameters and method branches, we selected the global (G) and local (L) approach and their 
combinations, which resulted in characteristics of posterior probabilities (PP) calculated as 
the pointwise (with regards to time k) arithmetic mean of the G and L values of the PP, and the 
pointwise maximum of the G and L values of the PP for the given patient. Further, we selected 
3D, 4D and 5D feature spaces of the ICP records and used the following numbers of clusters 
M = 1, 2, 3, 4, 5, 6. As mentioned above, evaluation of the preliminary experiments yielded 
three recommended types of feature vectors: H3D = ( f 2

k , f 3
k , f 5

k ), H4D = ( f 2
k , f 3

k , f 4
k , f 5

k ), and 
H5D = ( f 2

k , f 3
k , f 4

k , f 5
k , f 7

k ) (extracted from the formulae defined in section  2.4). To ensure 
numer ical consistency, the values of each feature included in the feature vector of the indi-
vidual set of experiments have to be normalized into the interval < 0, 1 >. This normalization 
is accomplished for all patients and all time instances k. The goal of these computer experi-
ments was to calculate the individual hGMMs of the input ICP data for all variable parameters 
which had been used afterwards for the calculation of several novel alarm functions. The 
resulted alarm functions had to be included into the ROC analysis and into the optimization 
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calcul ations of efficiency measure. The ultimate goal was to select the optimal variable param-
eters of the method, as well as the optimum alarm functions together with the corresponding 
optimal thresholds.

For our experimental setup we used the Matlab-based (Mathworks, version R2012b) 
NETLAB toolbox (Nabney 2002). In this implementation, an expectation maximization (EM) 
iterative algorithm is implemented that minimizes the negative log-likelihood function of the 
data set. Next, we constructed novel alarm functions of time, given through the indices k  =  12, 
13,..., n � 240 of the discrete time instants, using auxiliary functions F∗(k) or V∗(k) computed 
from the posterior hGMM probabilities (see section 2.6.2). In association with computational 
aspects of the implementation of the EM method, which includes the minimization of the neg-
ative log-likelihood function, it should be emphasized that this operation is not a well-posed 
problem (e.g. Bishop (2006)). To manage this problem when calculating the corresponding 
hGMM by the EM (before the final combination of the hierarchical outputs), we decided to 
repeat this critical step s times. Our experimentation (with s = 100) showed a certain variabil-
ity of the obtained results (different cluster centres). In most cases several groups of identical 
centres were observed.

We ordered the results according to the terminal-likelihood values of the individual attempts 
(in our case of negative log-likelihood in increasing order). The first t = 10 values served then 
for the selection of the respective 10 hGMM runs and for the calculations of the corre sponding 
posterior probabilities for the ICP record of the given patient. These probabilities also mani-
fested certain variability, so a representative curve needed to be determined. We proposed to 
define this curve as a posterior probability that had a minimum sum of L2 deviations with 
respect to the all of the remaining nine curves. As a final choice, we selected hGMM param-
eters which corresponded to the found representative posterior probability.

3.1. Evaluation of the ROC technique for calculation of the alarm function thresholds

According to the standard approach, the optimum value TAopt
j  for the given set of parameters 

dim, M  and all considered alarm functions (and their variations) is found as a value TAj , which 
corresponds to the Youden index (YI) of the previously calculated ROC curve (figure 4). The 

optimum thresholds TAopt
j  for the individual cases of ROC associated with the mentioned 

choice of the parameters are given in table 2. The alarm function Al3GL with the highest 
YI = 0.37 (sensitivity Se = 0.71 and specificity Sp = 0.67) is located in the table cell with 
dim = 3 and M + M = 3 + 3. However, we see that the corresponding optimum threshold 
TAopt

3  is very close to the boundary value zero that makes its application in practice unac-
ceptable. Therefore, we also considered different cases for which the YI is close to the maxi-
mum value and the corresponding optimum thresholds for the alarm functions are more 
suitable for practice. The following alarm functions and characteristic values were obtained: 
for dim = 3, M + M = 2 + 2, alarm function Al1G , YI= 0.26 (sensitivity Se = 0.79, speci-
ficity Sp = 0.48), and the threshold TAopt

1 = 0.12; and for dim = 5, M + M = 4 + 4, alarm 
function Al2L, Youden index YI = 0.33 (sensitivity Se = 0.48, specificity Sp = 0.85), and 
the threshold TAopt

2 = 0.21. The names of four possible types of posterior probabilities, used 
in the alarm function definition, are substituted in the calculated tables by acronyms with the 
following meanings: G—global, L—local, GL—arithmetic mean of the global and local PP, 
MGL—maximum of the global and local PP value for the given moment.

For a case when sensitivity is preferred to the Youden index, we created table 3 in which 
the maximum sensitivity value is reached for the parameters dim = 3, M + M = 2 + 2, Al1G  
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Figure 4. The plot of the ROC curve for the case with preferred maximum of sensitivity 
(see table  3). The corresponding parameters were: dim = 3, M + M = 2 + 2, Al1G  
with the optimum threshold TAopt

1 = 0.12. The Youden index achieved was YI = 0.26 
which is represented by the vertical line. The corresponding value of sensitivity is 0.79 
and of specificity is 0.48.

Table 2. The results of computer experiments with hGMM models generated for the 
input data and for four choices of the numbers of vital and fatal clusters. They are 
arranged in three separate blocks, each for the optimum combinations of the alarm 
function and feature vector space dimension. The individual columns contain the 
corresponding Youden index (YI) values together with the ROC optimum threshold 
TAopt

j  values of the corresponding alarm function. The individual rows are associated 
with one of four possible combinations of the local and global approaches used within 
the hGMM calculations.

hGMM (cluster numbers: M + M  )

2  +  2 3  +  3 4  +  4 5  +  5

Alj & dim Al-type YI TAopt
j

YI TAopt
j

YI TAopt
j

YI TAopt
j

G 0.26 0.12 0.12 0.64 0.05 0.60 0.16 0.74
Al1 L 0.11 0.48 0.18 0.30 0.16 0.31 0.17 0.38
& 3D GL 0.11 0.15 0.17 0.43 0.09 0.42 0.17 0.42

MGL 0.11 0.61 0.18 0.62 0.13 0.60 0.19 0.64
G 0.22 0.03 0.19 0.01 0.22 0.35 0.08 0.65

Al2 L 0.17 0.28 0.21 0.21 0.33 0.21 0.23 0.21
& 5D GL 0.19 0.03 0.23 0.15 0.24 0.29 0.19 0.32

MGL 0.19 0.05 0.21 0.22 0.22 0.35 0.14 0.51
G 0.15 0.01 0.33 0.02 0.02 0.41 0.18 0.61

Al3 L 0.16 0.14 0.29 0.01 0.37 0.01 0.33 0.02
& 3D GL 0.14 0.24 0.37 0.01 0.15 0.20 0.19 0.38

MGL 0.12 0.47 0.37 0.01 0.13 0.01 0.18 0.61
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with the optimum threshold TAopt
1 = 0.12. Furthermore, in table 3 the maxima of sensitivity 

achieved for the individual choices of cluster numbers (table rows) are in bold. This subop-
timal, but fully acceptable, case is illustrated in the following figures: figure 5(B2) for vital 
patient no. 9, and figure 6(B2) for the fatal patient no. 11.

3.2. Evaluation of the calculation of the alarm function thresholds based on the efficiency 
measurement

The aim of our computer experiments with efficiency measurement was to determine the 
necessary thresholds for individual novel alarm functions. We recall that the essential ele-
ment of such a measurement is the relation between the real ICP alarm indication (derived by 
comparing the ICP value with the threshold Thr) and the novel alarm indication (derived by 
comparing the actual alarm value with the specific threshold TAj). According to the recom-
mendations (Mathew 2005), for the ICP threshold, we used the value Thr= 20 mmHg. For 
the experiments we established a parametric set consisting of 3 × 6 × (3 × 4) = 216 triplets 
of the quantities: (dim, M, j), where dimensions of the feature vector spaces are dim  =  3,4,5, 
the number of hGMM clusters are M = 1, 2, . . . , 6, and, finally, we considered three alterna-
tive novel alarm functions Alj, j = 1, 2, 3, each having four versions (global, local, average, 
maximum). The optimization procedure consists of

 • taking a triplet from the parametric set (216 possibilities); 
 • calculating the corresponding hGMM for features derived from ICP data; 
 • calculating the values of the chosen alarm functions (for each time instant); 
 • varying the values of the thresholds TAj ; 
 • calculating the corresponding values of the efficiency measure µr(20, TAj) for all possible 

values of the thresholds TAj ; and
 • finding the maximum of µr(20, TAj).

Table 3. The maximum ROC sensitivity (Se) and specificity (Sp) values and the corresponding optimum 
threshold TAopt

j . For each of the six types of hGMM according to cluster number (M vital and M fatal 
clusters in the first column) and each of the feature space dimensionalities, 3D, 4D or 5D, there are 12 
possible combinations of alarm function types (three basic forms and four combination types) which 
are expressed via the symbol AljY  in the table (Y stands for one of the acronyms G, L, GL, or MGL 
mentioned in the text). All these variations were included in the ROC analysis, and the number listed in 
the table represents the case for which the maximum Youden index was achieved. The alarm functions 
are accompanied in the table rows by the corresponding values of the ROC sensitivity and specificity 
with the corresponding optimum threshold. The maxima of the sensitivity are enhanced in each row 
(corresponding to the individual choice of the cluster numbers).

hGMM  
M + M

3D 4D 5D

AljY Se Sp TAopt
j AljY Se Sp TAopt

j AljY Se Sp TAopt
j

1  +  1 Al1MGL 0.44 0.79 0,20 Al3GL 0.42 0.82 0.06 Al3GL 0.77 0.47 0.01

2  +  2 Al1G 0.79 0.48 0.12 Al3MGL 0.78 0.39 0.01 Al2GL 0.59 0.60 0.03

3  +  3 Al3GL 0.71 0.67 0.01 Al3L 0.41 0.86 0.06 Al3G 0.64 0.55 0.01

4  +  4 Al3MGL 0.54 0.58 0.01 Al1L 0.53 0.60 0.24 Al1L 0.55 0.64 0.23

5  +  5 Al3L 0.57 0.76 0.02 Al1L 0.52 0.66 0.22 Al1GL 0.34 0.80 0.38

6  +  6 Al2L 0.62 0.71 0.03 Al3G 0.69 0.49 0.01 Al3L 0.61 0.66 0.05
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For finding the local maxima of the measure µr( ) we used the available Matlab function 
 peakdet and the following heuristics:

 • the function peakdet uses a control parameter delta for setting an appropriate scale of the 
local maxima; on the basis of computer experiments with various values of the delta we 
found the optimum value δ = 0.001; 

 • next, we removed the local maxima of µr( ) which were encountered on the borders of the 
range of the threshold TAj  because we regarded them as methodologically unacceptable –  
they would either cause a situation (at very low threshold TAj  values) with an almost 
permanent active novel alarm, or a situation (at very high threshold TAj  values) with 
almost no novel alarm possible; 

 • thus, for each triplet of parameters we obtained several peaks of the local maxima of the 
measure µr (on average 4.2 such peaks have been observed); the highest local maximum 
of the obtained peaks was taken as the final solution.

The results of the maximization procedure performed for all 216 triplets of the param-
eters, described above are listed in table 4. The range of the measure µr( ) is (0.3, 3.64) and 
the threshold TAj  is within the interval (0, 0.99). From the table we can draw the following 
conclusions:

 • the global maximum of the measure µmax
r = 3.64 is achieved for the parameters: 

dim = 4, M = 4, Al1G with the optimum threshold TAopt
1 = 0.99; 

 • similarly to the case of the ROC optimization, we obtained a threshold value corre-
sponding to the global maximum that is very close to the boundary value that can cause 
tedious and ambiguous implementation in clinical practice; therefore we analysed the 
table with the aim to find such values of the measure µmax

r  which differ from the general 

maximum minimally, but which yield more acceptable thresholds TAopt
j ; 

 • the following values are the best candidates for consideration: 2.45 ( Al1L ,4D, 3+3), 
2.33 ( Al3L ,3D, 2+2) and 2.28 ( Al1GL ,4D, 6+6).

Table 4. The threshold values TAopt
j  of the alarm functions corresponding to the 

maximum values of the efficiency measure µmax
r  calculated for various parameters 

(dim = 3D, 4D, 5D, M + M = 1 + 1, . . . , 6 + 6), the reference ICP threshold 
Thr  =  20, and for the range of all thresholds TAj ∈ (0, 1) and each alarm function 
Alj(k). The maxima of µmax

r  obtained for each dimension are in bold.

hGMM  
M + M

3D 4D 5D

AljY µmax
r TAopt

j AljY µmax
r TAopt

j AljY µmax
r TAopt

j

1  +  1 Al3L 1.58 0.54 Al3L 1.79 0.54 Al3L 1.85 0.58

2  +  2 Al3L 2.33 0.48 Al2L 1.81 0.59 Al2L 2.09 0.56

3  +  3 Al2L 1.61 0.21 Al1L 2.45 0.64 Al2L 1.5 0.27

4  +  4 Al3L 1.84 0.43 Al1G 3.64 0.99 Al2GL2.06 0.51

5  +  5 Al2L 1.75 0.21 Al2L 1.78 0.36 Al2L 1.75 0.56

6  +  6 Al2L 2.07 0.56 Al1GL 2.28 0.75 Al2L 2.05 0.59
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3.3. Graphical evaluation of particular alarm functions and thresholds

Before we characterize selected graphical outputs from our computer experiments, two impor-
tant methodological aspects should be emphasized:

 (i) All theoretical considerations and calculations needed for the proposed method resulted 
in the development of three novel alarm functions that could serve as a complementary 
tool for monitoring of the ICP records of real TBI patients with the aim of extending the 
possibilities of reasonable triggering of additional medical intervention.

 (ii) Since the concept of the novel alarm functions is similar to the conventional detection of 
the ICP values exceeding a predefined threshold, the search for a reasonable threshold for 
each individual alarm function represents an inherent part of the proposed alarm function 
methodology.

In figures 5 and 6 we illustrate two examples in which the results achieved for the optim-
ization approach based on the ROC analysis are grouped with the results achieved by 
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Figure 6. An example of the set of summary plots for the fatal patient (no. 11).
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Figure 5. An example of the set of summary plots for the vital patient (no. 9).
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optim ization via the efficiency measure, µr, for one representative case of a vital patient (no. 
9) and one representative case of a fatal patient (no. 11). The organization of the plots in these 
pictures is identical, and it can be described jointly as follows:

 (i) The first box, A, plots the basic ICP record with the commonly established threshold 
Thr= 20 mmHg.

 (ii) The second box, B1, plots for the posterior probabilities calculated for the 3D result, 
and the hGMM clusterization with 2 + 2 clusters are depicted: one curve for the global 
approach, and one for the local approach.

 (iii) The third box, B2, shows the plot of the optimum alarm function Al1G  derived from the 
posterior probabilities given in B1, together with its threshold TAopt

1 = 0.12, found for the 
abovementioned parameters.

 (iv) In the fourth box, C1, the plots of the posterior probabilities calculated for dim = 4 
and the hGMM clusterization with 6 + 6 clusters are depicted using the global and local 
approach; again, one curve depicts the global approach, and the other the local approach.

 (v) The fifth box, C2, represents the plot of the optimum alarm function Al1GL derived from 
the posterior probabilities given in C1, together with its threshold TAopt

1 = 0.75, calcu-
lated via the efficiency measure µr( ) (‘mu’).

The illustrated plots of the novel alarm functions, as well as their thresholds, reveal the 
following particular findings:

 • In the case of vital patient no. 9 (figure 5), despite the fact that the plot of the ICP record 
often exceeds the conventional threshold, the patient survived; though it is very likely 
that some of the triggered alarms contributed to the improvement of the patient’s health 
condition, a number of alarms could still be false, thereby leading to an unnecessary 
high clinical burden on the patient; on the other hand, both novel alarms show the alarm 
function values under the critical threshold for most of the time instants.

 • In the case of fatal patient no. 11 (figure 6), similarly to the preceding vital case, a number 
of alarms should have resulted in triggering of the medical intervention procedure, but 
this time, unfortunately, without the favourable effect on the patient’s survival. Therefore 
a question arises as to whether there are some additional alarms indicated by novel alarm 
functions; in the first case (B2), obtained by application of the ROC analysis, we see that 
for many time instants when ICP values are below the 20 mmHg threshold, the novel 
alarm function Al1G  yields values over the threshold TAopt

1 = 0.12 indicating an alarm 
state, in the second case (C2), obtained through the efficient measureµr( ) maximization, 
there are only time instants round the 140 (±5) h for which we get values of the novel 
alarm function Al1GL over the threshold TAopt

1 = 0.75.

3.4. Summary of the results

The optimum values of the ROC method applied to the entire data set are achieved for lower 
dimensionality (3D) and the lower clustering model (2 + 2 clusters of the hGMM). Moreover, 
its advantage is in model simplicity, lower computational costs and higher stability in com-
parison with the maximization of the efficiency measure µr( ) (4D, 6 + 6 hGMM clusters).

The ROC analysis of the entire retrospective ICP data set considering possible values of the 
conventional ICP threshold (section 2.3) yielded the optimum threshold Thr= 19.9 mm Hg 
for Youden index YI= 0.19, with sensitivity Se  =  0.33 , and specificity Sp  =  0.86. This result 
is in good agreement with the clinically established threshold Thr= 20 mm Hg. However, by 
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the application of our alternative alarm functions to the same ICP data set based on the pro-
posed novel method (section 3.1) we reached better results of the ROC analysis, i.e. Youden 
index YI= 0.33 (sensitivity Se  =  0.48 and specificity Sp  =  0.85) and Youden index YI= 0.26 
(sensitivity Se  =  0.79 and specificity Sp  =  0.48).

4. Conclusions

 (i) The measured ICP data have been thoroughly analysed together with the accompanying 
information on medical intervention. No significant values of correlation between ICP 
data and 12 clinical parameters were observed. Despite the high overlap between ICP 
data sets for vital and fatal patients, the results of the nonparametric Kruskal–Wallis 
test proved that these two sets are significantly different (p < 0.001).

 (ii) We studied various clustering schemes defined on the basis of different types of seg-
mentation, grouping and representing the individual ICP records considered as time 
series. Keogh and Lin (2005) carried out a comprehensive survey of ‘sliding window’ 
methods applied to TS resulting in the conclusion that ‘clustering of time series sub-
sequences is meaningless’. We have tested and analysed Keogh’s study. We proposed 
a novel ICP subsequence representation using vector features in the four-, five- and 
six-dimensional vector spaces that make the objections of Keogh et al not applicable to 
our clustering scheme.

 (iii) We formulated a specific clusterization problem for feature vector spaces. In section 2.4 
we proposed six numerical features defined for each time segment of ICP.

 (iv) We proposed the use of a hierarchical Gaussian mixture model (hGMM) for clustering 
the extracted features which represent ICP time subsequences. The model defines inde-
pendent clusters for vital and fatal patients. This is the advantage of the hGMM model, 
since the basic GMM model (albeit they both are supervised) does not provide such a 
possibility and an extra procedure has to be developed for labelling output clusters into 
vital and fatal classes.

 (v) We proposed combining a global approach with a local approach of feature generations 
in the following way: (1) in the global approach, a feature is defined on a discrete 
support of time instants (indices) with the fixed beginning where the ICP record start; 
(2) in the local approach, a feature is defined on a discrete support of time instants 
with a width of 12 indices, ending at the moment where the last ICP value is recorded. 
Although the shifting of the individual supports resembles the sliding window approach, 
it transforms the ICP values into a low-dimensional feature space instead of dealing 
with the raw ICP values.

 (vi) We proposed the following procedure for processing the real ICP values recorded 
during the TBI treatment of a patient: for any time moment of the ICP record, the 
feature vectors for all the ICP subsequences preceding and associated with the given 
time moment are calculated. Next, posterior probabilities of hGMM are calculated over 
the time.

 (vii) In section 2.6 three alarm functions were proposed which were later explored by exten-
sive computer experiments.

 (viii) In section 2.7 we developed two novel techniques: (i) the first one is related to the 

calcul ation of the optimum thresholds TAopt
j  for the proposed alarm functions via the 

ROC analysis (that is not standard in using specific relations for definition of true-
positive and false-positive rates), and using the Youden index; (ii) the second technique 
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consists of determination of the thresholds TAj  using a suitable efficiency measure. 
The results obtained by each of these two alternative techniques were evaluated in 
sections 3.1 and 3.2 and grouped in the corresponding tables 2–4.

 (ix) The research study reported in this paper has a limitation relating to the extent of the 
input retrospective ICP data. This was caused by the limitation of the clinical archive 
available to us. However, it should be emphasized that the essential points of the proposed 
and explored methodology are independent of the magnitude of the processed data. To 
achieve a stronger generalization of the obtained results, the developed algorithms can be 
applied to any much greater ICP data cohort that was beyond the feasibility of this study.

 (x) In relation to the cost of the necessary computational operations, there are two aspects 
that should be mentioned: (i) first, it is obvious that the most demanding calculations are 
related to the preparation of the hGMM for the whole set of the retrospective ICP data, 
however, these are needed just once (in offline mode) and therefore do not influence 
the ICP monitoring itself; (ii) second, having all the posterior probabilities ready-to-use 
(according to the number of the chosen clusters within the already found hGMM), the 
calculation of the instant value of the alarm function (in real time) for the ICP record 
being evolved represents a very simple operation.

 (xi) It is not possible to interpret the proposed novel alarm functions directly in the view of 
the characteristics of the clinical state of the patients with severe TBI. In the following, 
we describe our attitude towards understanding of the possible use of the proposed 
alarm functions in the context of future clinical practice.

4.1. Proposal of a prospective ICP monitoring technique.

On the basis of the research results, we propose to introduce a monitoring technique that 
could extend conventional ICP measuring itself. Such an extended technique might be helpful 
to clinicians in making a more sophisticated and efficient decision on necessary consecutive 
intervention steps at any moment of TBI patient treatment. First of all, we assume the avail-
ability of a new extensive validation of the proposed methodology on an ICP data cohort of a 
greater size. This activity can be carried out in offline mode (A). Then a suitable protocol (B) 
has to be developed, including the conventional ICP alarm, completed by novel alarm func-
tions. The protocol could be applied in the required online mode when monitoring actual TBI 
patients. We describe these two steps in detail.

 A 

 (i) Our ICP data set was of limited size especially in regard to fatal cases that necessitated 
using the principle of cross-validation. This principle could be avoided by acquisition 
of a larger dataset. In such a case it is necessary, first, to set apart data that will be used 
exclusively for the calculation of the chosen hGMM of ICP data, while the remaining 
part of ICP data (testing data) will be used merely for the calculation of the selected 
alarm functions and subsequently for searching for the optimum values of the alarm 
function thresholds. Similar experimentation with the parameter set of triplets, as was 
proposed in the paper, would be needed.

 (ii) For determination of the optimum thresholds of the alarm function(s), which would 
serve as characteristics of a new ICP data cohort, two possibilities are available: the 
ROC approach using the Youden index, or the approach using efficiency measure 
µr( ). As the former approach is less computationally demanding, we recommend 
using calculations needed for finding the Youden index of the ROC for each of the 
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three alarm functions (section 2.7.1). The final decision on selecting clinically accept-
able values of the optimum set of parameters found in the experimental offline part of 
processing will depend on the interdisciplinary expertise of clinicians and experts in 
machine learning.

 B 

 (i) The conventional alarm function, consisting of comparing the actually evolving ICP 
record with the established ICP threshold, could be extended by a novel alarm function 
and its threshold. Provided that all needed parameters from the A step are available, 
for the ICP record, existing in the time instant k, the calculations of the corresponding 
posterior probabilities for the fixed hGMM can be carried out. Then the value of 
the selected novel alarm function could be computed and compared to its threshold 
known from the A step. All these calculations can be performed in real time and 
simultaneously with the ICP measurement. Each additional alarming situation should 
be evaluated by a clinician before triggering additional urgent medical intervention.

 (ii) All necessary calculations could be automatized and implemented as an extension of 
the standard software used in the ICP monitoring process.

 (iii) All interventions, evoked either by the exceeding of the conventional ICP threshold, 
or the novel alarm(s) threshold(s) should be strictly recorded—not only due to legal 
reasons, but also with the aim of accumulating useful data for further improvement of 
TBI patient treatment.

Future research

As the method based on the Youden index is the most frequently used one in biomedical statis-
tical applications, we adopted it in our explorations. Nevertheless, for future research it would 
be helpful to also consider complementary approaches (Leeflang et  al 2008), because the 
applied method does not consider any costs of wrong classifications or benefits of correct clas-
sifications. For some purposes, higher sensitivity may be more important than a higher speci-
ficity (or vice versa). A pre-specified property of a cut-off point that is relevant to the context 
of the task, in which the test will be applied, could be preferred. For example, a cut-off could 
be based on whether optimizing sensitivity or specificity has greater practical value related to 
the ICP monitoring of the TBI patient (Xinhua 2012). Obviously, this problem represents an 
open issue of the prospective research in the given field, for which the close collaboration of 
clinicians with experts in machine learning is inevitable.
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1. Introductory information for the electronic supplement

Additionally to the subgoals of our research study (mentioned in Section 1.1 of the main text) we
set two complementary subgoals:

• to avoid problems caused by using sliding window principle for subsequence generator, as
addressed in the paper of Keogh & Lin (2005), we set the next additional goals: i) testing this
principle in the initial ICP domain, as well as using various simulated signals, ii) transforming
the original ICP-time domain to a multi-dimensional feature vector space, and testing the
principle in the new setting,

• based on the reviewer's recommendation, we amend the paper text by the �gure examples,
where the alarms do not behave ideally as expected; in particular, we provide the plots of
posterior probabilities and alarm functions for a surviving patient with a relatively long period
of elevated ICP over the established threshold, as well as the plots for a fatal patient whose
ICP record manifested none of time instants with the elevated ICP value above the threshold.

2. Methods - ICP data statistics

2.1. Statistics of various characteristics of retrospective ICP data

The plots of typical ICP data for fatal and vital cases are presented in Fig. 1 and Fig. 2. Along with
the ICP measurement, four di�erent types of intervention have been recorded - administration of the
insulin (Ins), norepinephrine (NorEp), Manitol, and Hypersalinity. In our calcultaions, for single
patient correlation, only data with at least 20 data points were taken into acount (available from 22
up to all 40 patients, depending on the selected parameter). Thus, for Manitol and Hypersalinity no
correlation could be calculated, as these two types of intervention data were too sparse. Moreover,
six diagnostic parameters have been recorded as well: heart rate (HR), body temperature (BT),
PaO2, PaCO2, % of glucose (Gl) and lactate (Lac). The interventions have been characterized by
a total inserted amount of the intervening substance administered during each hour.
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Figure 1. A sample of ICP time record of a fatal patient together with the time
course (in hours) of the interventions.

We have computed correlation of ICP data with each of 8 above mentioned parameters (Tab.1).
No signi�cant values of correlation have been observed.
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Figure 2. A sample of ICP time record of a vital patient together with the time
course (in hours) of the interventions.

variables
intervention type physiological parameters

Insulin NorEp HR BT PaO2 PaCO2 %Gl %Lac

correlation 0.00 -0.06 0.07 0.09 0.01 -0.09 -0.03 -0.13

stdv of corr. 0.22 0.30 0.26 0.25 0.24 0.25 0.20 0.26

Table 1. The values of individual correlation coe�cients between ICP and variables (the �rst
two types of intervention and six physiological parameters).

To support a clinical decision on the subsequent treatment of TBI patients, several TBI scores
of various types are used as auxiliary information to the measured ICP values. For our retrospective
study the following scores were available: APACHE II Score, APACHE II mortality, GCS b. A.:
total, SAPS II Score, SAPS II mortality, ISS, TRISS survive. We have analysed all ICP records
for fatal and vital patients in the view of relations between individual scores and the basic record
attributes (fatal or vital outcome). We have found no unique indication of the fatal case by the
critical score value, i.e., the subset of the fatal ICP records could not be separated from the set
of the vital ICP records based on any score. Therefore we hypothesize, that clinicians undertook
intervention action whenever they felt, that the development of the patient state had satis�ed
conditions �xed in a conventional protocol (including ICP threshold and practically independently
on TBI score values). Thus our analysis has been accomplished solely on ICP data, without taking
into account any additional information mentioned above.

The plots of normalized histograms in Fig.3 demonstrate several facts: i) taking into account
the standard information that the critical ICP value threatening the survival of TBI patients Thr =
25 mmHg, we can see that in our retrospective cohort of the ICP data the values from the interval
< 25,45 > occur several times in the set of vital patients, and there is negligible number of the
values greater than 45 present in the same set. It means, the ICP overun of the Thr cannot be in
any case declared as an absolute indicator of approaching terminal decease of the patient.

Note that this imbalance is inherent in the whole set of the available ICP data that re�ects
approximately the overall priors of these two categories of treated cases. The proportion of the ICP
samples: fatal/vital patients is approximately 1/3.2, therefore, �rst, we had multiplied the absolute
frequencies of the fatal ICP samples by this coe�cient. Then we calculated two histograms of
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Figure 3. The normalized histograms of the ICP values incident in the set of
ICP records included in the retrospective study. Red: for fatal cases, Blue: for vital cases.

relative frequencies for both cases by their normalization to the overall number of the ICP samples
in the available input set. In Fig.3, these histograms are depicted separately for vital and fatal
patients. From the histograms, it can be seen that for the smaller ICP values - up to the value of
20 mmHg - more frequent values originate from vital patients. On the other hand, the higher ICP
values correspond to the fatal patients. This fact is in full accordance with the situations in clinical
practice with the patients su�erred from severe TBI.

Finally, in spite of a high overlap between ICP data records for vital and fatal patients, it can
be stated that according to the results of the nonparametric Kruskal-Wallis test, these two sets are
signi�cantly di�erent (p < 0.001). This test has been used, because neither of the data sets of the
two categories obeyed normal distribution.

2.2. ROC for the conventional criterion of comparing the ICP values to threshold values Thr -
Add on

To our best knowledge, we did not �nd any speci�c example in the available literature that would
provide ROC analysis of the conventional criterion of ICP (k) > Thr for particular ICP data of
a clinical (retrospective) study. Therefore, we decided, to carry out the ROC analysis of all ICP
records from our retrospective data set. For the ICP threshold values Thrv for v = 1, 2, . . . , 10, we
selected the following set of ICP integer values (mmHg): {5,10,15,20,25,30,35,40,45,50} which, for
completeness, span the extremum ICP values, though there are out of clinically permitted range.
In this situation, the vital and fatal cases, as well as prediction outcomes are associated with the
values of ICP (k) for all the individual indices k encountered in the set of ICP records. The details
on the results of this ROC analysis are provided in the main paper body, however, for the sake of
terminology unambiguity we add to the supplement the following basic ROC terms de�nitions.

(i) If Se and Sp denote sensitivity and speci�city, respectively, the distance between the point
[0,1] and any point on the ROC curve (on the plot of real-valued pairs [x, y] = [1 −
specificity, sensitivity]) is d =

√
[(1− Se)2 + (1− Sp)2]. To obtain optimal cut-o� point that
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de�nes the optimum threshold value of the given alarm function, it is necessary to calculate the
distance for each observed cut-o� point of the ROC, and locate the point where the distance
d is minimum.

(ii) The second method is the so-called Youden index J that maximizes the vertical distance from
the line of equality (diagonal line) to the point [x, y]. The main aim of Youden index is to
maximize the di�erence between True Positive Rate (Se) and False Positive Rate (1 − Sp).
The little algebra yields J = max(Se+ Sp).

2.3. Representation of the ICP original data by means of vector features

In Section 2.4 we introduced a set of seven vector features based on the ICP values. We introduced
these quantities by reasons of avoidance of the problems related to the sliding window principle
in time-series clusterization. After having �nished preliminary experiments with the testing of the
Keogh'claim (Keogh & Lin (2005)) (see the next section), we eventually con�ned ourselves to only
�ve most informative features {f2

k , f
3
k , f

4
k , f

5
k , f

7
k}.

5

10

15

20

25

30

35

40

45

fatal vital

mean

[m
m

 H
g]

0

5

10

15

20

25

30

fatal vital

standard deviation

[m
m

 H
g]

−300

−200

−100

0

100

200

300

400

500

600

700

fatal vital

covariance coefficient

0

1

2

3

4

5

6

7

8

9

10

fatal vital

ICP abs. diff.

Figure 4. The boxplots calculated for four main features: mean, standard deviation, covariance

co�cient, and ICP absolute di�erence calculated for the support Sk. All subsequences of the
available ICP records were used. In each boxplot the separate characteristics of the fatal and
vital records are depicted.

To illustrate the behavior of the most relevant real-valued features, we selected four selected
features, namely: mean value, standard deviation, covariance coe�cient, and ICP absolute
di�erence. Then we calculated the feature values for the subsequences Sk of vital and fatal categories
of the ICP records and displayed the ranges by means of boxplots in Fig.4. For the �rst three
features the means calculated for the subsequences of vital and fatal categories di�ered signi�cantly
(Kruskal-Wallis test, p < 0.001). Whereby, the feature mean values for the fatal category were
higher than feature mean values for the vital category. In the displayed boxplots, three features -
mean, standard deviation, and covariance coe�cient showed partial data separation (p < 0.001).
Having de�ned two m-dimensional feature vectors for the subsequences {Sk}and {Lk−s}, generated
for every ICP record, we can proceed to the question of selecting an appropriate clustering scheme
in this feature space.
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2.4. Examination of the "sliding window"principle applied to TS according to Keogh's results

As outlined in Keogh & Lin (2005), clustering of subsequences of individual or streamed TS,
extracted via a "sliding window" technique, has received much attention. Based on a comprehensive
survey of methods in the domain of data-mining and machine learning, the authors exposed this
technique to a scrupulous analysis with several unexpected conclusions con�rming their basic claim,
that: "clustering of time series subsequences is meaningless". Naturally, before starting our research
into clustering the speci�c type of TS, namely ICP records, we were interested in three points:
i)validating the conclusions of Keogh et al in the case of simulated synthetic data they used,
ii)analyzing our speci�c situation with respect to their claims, iii)examination of our ICP clustering
scheme, that will di�er from sliding window method used in their research.

2.4.1. Testing the eponymous pattern data of cylinder, bell, an funnel
After adopting three basic de�nitions of time series (TS ), subsequence, and sliding window

(Keogh & Lin (2005)), we concentrated on a simulated data set with three categories of input
TS, i.e., data synthetically generated as real-valued vectors (with the dimension 128) having the
patterns of cylinder, bell, and funnel. Besides the calculations discussed by Keogh et al, we decided
to accomplish also a cross-validation scheme for a classi�cation task de�ned for segmented (sTS)
data into three classes. For each class (consisting of 30 samples of the given pattern), 2/3 of the
generated TS data were used for training, and the rest for testing. For a streamed TS (individually
generated training vectors have been concatenated into a �nal (128×60) dimensional streamed
vector. First, we applied the sliding window procedure to this long vector (for the window length
values w = 16, 32, 64, 128) and generated sets of sTS subsequences. Afterwards, the standard k -
means (k = 3) clustering was performed on every set of (training) subsequences corresponding to the
selected window length. We observed the sinusoidal shape of centroids of the three obtained clusters.
Consequently, the claim of Keogh related to the independence of obtained sinusoidal centroids of
input sTS data, was con�rmed with minor deviations for all the sliding window lengths. However,
the claim has been con�rmed without any exception, if we enlarged the simulated data sets up
to 2000 training samples for each class. Since in the paper Keogh & Lin (2005) no information
was given related to any real task in which a sTS method had been used, we were also interested
in a question, how the sinusoidal shape of cluster centroids can a�ect results of the actual TS
segments classi�cation task. Although the claim of Keogh on meaningless clustering of sTS applied
to streamed TS is relevant, we argue that cannot be taken in an absolute sense, as the values we
obtained for classi�cation accuracy (CA) were greater than simple 1/3 for a random classi�cation.
Additionally, we went through the streamed TS scheme to the application of the sliding window
separately to the individual simulated TS vectors. For the larger set of training samples (2000),
the independence of sinusoidal centroids of all three clusters has been completely con�rmed for all
sliding window lengths w. We note that the obtained values of CA, averaged over three clusters,
were as follows: CA = 0.17 (for w = 16),CA = 0.46 (for w = 32), CA = 0.62 (for w = 64), and
CA = 0.76 (for w = 128). This results justify us to a�rm that the classi�cation realized for the
given STS sets with sinusoidal centroids is meaningless only for the very small window length in
relation to the dimension of the initial input TS.

2.4.2. Analysis of the STS of ICP data of the retrospective study

Keogh et al (Keogh & Lin (2005)) state, if we run sTS k -means on any dataset T (with the length
m) with an overall trends of 0, with k = 1, we will always end up with a horizontal line as the
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cluster centre (centroid). Therefore, we would like to test this claim on our speci�c data, i.e., on a
set of ICP records. More speci�cally on a set of the sTS derived by a sliding window method with
w � m. First of all, we should emphasize that in the case of ICP TS, the application of the sliding
window technique to a streamed TS, generated from all the available ICP records, does not come on
force. The reason is that each ICP record uniquely originates from one individual patient and any
approach to clusterization of any time segments of the ICP has to preserve this uniqueness of the
origin. First, we calculated zero-mean (centered) ICP records. Based on preliminary experiments
with clusterization of the dataset using various values of w, we selected the value w = 18 on the
empirical basis. Further, we performed sliding window procedure for each ICP record separately.
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Figure 5. a) The plots of centred (zero-mean) ICP values generated by the sliding window width
w=18 as subsequences and averaged over the whole ICP record. b) The plot of the global mean
of these subsequences calculated over the all ICP records.

In Fig.5a, the obtained values of the centred subsequences for all ICP records (18-D real-valued
ICP vectors) are displayed as individual broken lines. Each line represents the data derived from
the ICP record of one patient. Each ICP component (1÷ 18) has been calculated as an average
value of the values of the same component considered over the whole set of the TS subsequences
for the given ICP record. The global mean vector of the ICP subsequences for the given window,
illustrated in Fig.5b, is not a tilted straight line. Finally, we can observe that after performing
k -means clustering of the obtained sTS data (using the windov length w = 18� 240) into two
categories of the assumed fatal and vital patients, the nonlinear shapes of the obtained cluster
centroids (18-D vectors) do not satisfy the claim of Keogh, i.e. they did not end up as a horizontal
line.
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Figure 6. a) The plots of the 6-D feature vectors components derived from the initial ICP
values based on a system of time segments with �xed beginning and various length, b) the plot
of the global mean vector of the feature vectors calculated by averaging of each feature vector
component over all ICP subsequences.
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Figure 7. The plots of the centroids of the clusters of the feature spaces.

Now we can recall the Keogh's claim presented in the publication Keogh & Lin (2005) on
segmented TS we mentioned above. The claim states the meaningless of clustering the sTS generated
by the sliding window approach. In comparison to the scheme described in the paper, we have
already showed one di�erence to our approach. Namely we do not use streamed TS, i.e., the sliding
window has to be applied always to an individual ICP record of the patient separately. We proposed
a di�erent method that served a basis for our research into subsequent ICP time segment clustering.
Instead of the original ICP values we represent each ICP segment by its m-D feature vector (as
de�ned above). As the seventh feature represents just point value of the ICP in its time record
and has nothing to to with the sliding window principle, for our experiments we used merely �rst
six features. In the next two �gures, the averaged values of the individual feature components are
displayed for all ICP records. In Fig.6a each broken line represents one patient and the particular
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numbers for the indices (1÷6) represent mean values of the corresponding component calculated for
all segments pertinent to the given patient. The global mean vector of the feature vectors obtained
for all ICP subsequences is illustrated in Fig.6b.

Finally, we calculated centroids of two clusters: - for the clusters apriori given according to
the vital and fatal outcomes of ICP monitoring - and for the clusters found by k -mean clustering
method applied to the set of features values. The cluster centroids of both clusters are depicted
in Fig.7, the results of sTS clusterization, accomplished according to our TS segmentation method
without sliding window technique, are signi�cantly di�erent from those declared in the paper Keogh
& Lin (2005).

2.5. Graphical evaluation of particular alarm functions and thresholds

In addition to Figures 8 and 9, presented as samples of simulated monitoring with �appropriate�
or advantageous performance of several new alarm functions, we illustrate in the graphical form
two interesting cases of posterior probabilities and alarm functions. These are, the plots for the
survived patient (N.45), whose ICP record has longer periods of elevated ICP over the threshold,
and the plots for the deceased patient (N.7) having the ICP record with zero or minimum number
of episodes overrunning the ICP threshold.

The organization of the plots in the following pictures is identical as in the paper text, and it
can be described jointly as follows:

(i) The �rst box - A, involves the plot of the basic ICP record with the commonly established
threshold Thr = 20 mmHg.

(ii) In the second box - B1, the plots of the posterior probabilities calculated for the dimension
3D, and the hGMM clusterization with 2+2 clusters are depicted: one curve for the global
approach, and one for the local approach.

(iii) The third box - B2, represents the plot of the optimum alarm function Al1G derived from the
posterior probabilities given in B1, together with its threshold.

(iv) In the fourth box - C1, the plots of the posterior probabilities calculated for the dimension 4D,
and the hGMM clusterization with 6+6 clusters are depicted; again, one curve belongs to the
global approach, and another to the local approach.

(v) The �fth box - C2, represents the plot of the optimum alarm function Al1GL derived from the
posterior probabilities given in C1, together with its threshold.
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Figure 8. An example of the set of summary plots for the VITAL patient (N.45).
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Figure 9. An example of the set of summary plots for the FATAL patient (N.7).

The illustrated plots of the novel alarm functions, as well as their thresholds, reveal the following
particular �ndings. The plots depicted in Fig. 8 represent the �worst� case of the survived patients
set; we can see that the traditional alarm, i.e. ICP (part A) holds above the threshold of 20 mmHg
for maximum proportion of the recording time (67 %) among all the vital patients. In Fig. 9, on
the contrary, the �worst� case for non-survived patient is presented. Here, the traditional ICP alarm
(part A) holds below the conventional ICP threshold of 20 mmHg for maximum proportion of the
recording time (100 %). It is obvious that the novel alarms (found as optimal for both methods
of the alarm function threshold optimization) do not behave in favour of correct indication of an
emergency state of the patient being monitored.
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In the former case, the �rst alarm (alarm1 G) (Fig. 8, part B2) is remarkably elevated above
its threshold as it only re�ects ICP curve that is continually increased over the 20 mmHg threshold
during the major part of the recording time. The second alarm (alarm1 GL) oscillates around
its threshold (part C2) and rests much more inside the vital zone (below the threshold) than the
conventional ICP alarm (part A).

In the latter case, while the �rst alarm (alarm1 G) Fig. 9, part B2) wanders most of the time
slightly above its threshold, the second alarm (alarm1 GL, part C2) holds all the range uniquely
under its threshold. Due to the extreme vital-like ICP record, though it belongs to the non-survived
patient, the additional alarm behaves similarly to the conventional ICP and it is di�cult to �nd
proper clues for the intervention procedure just on the basis of the ICP monitoring.
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