Assessment and training of visuospatial cognitive functions in virtual reality: proposal and perspective

Štefan Korečko, Marián Hudák, Branislav Sobota
Technical University in Košice

Martin Marko, Barbora Cimrová, Igor Farkaš
Comenius University in Bratislava

Roman Rosipal
Institute of Measurement Science, Slovak Academy of Sciences

9th IEEE Int. Conference on Cognitive InfoCommunications, 2018, Budapest
Visuospatial functions

- detection, representation, manipulation, and storage
- allow us to perceive objects, locate their position in space, orient our attention, infer spatial relations, and remember the scene
- enable performing judgments related to direction and distance among external objects and thus allow us to navigate
- focus of psychologists and neuroscientists who have tools how to measure, train and restore them (Baddeley, 2012; Shepard & Metzler, 2011; Polaná et al., 2012; Toril et al., 2016; Barman et al., 2016)
Linking behavior to brain

- cognitive neuroscience approach
Testing visuospatial functions

- focus on either simple (automatic) processes or complex ones (deliberative), involving visuospatial short-term or working memory, mental rotations, and executive visual attention (Dijkstra, et al, 2017; Shipstead, 2012)

- Trainings and restoration programs employ brain plasticity (Paulus, 2011)

- Typical training/testing in 2D (reduction of real-life complexity)

- Concerns can be raised w.r.t. (Neubauer et al., 2010)
 - ecological validity
 - generalization of the findings
 - optimization of the training and restoration programs
Using virtual reality games

- (3D) virtual environments may modulate neuropsychological measures (Schultheis et al, 2002; Matheis et al, 2007; Parsons et al, 2017)

- Research question: Which elements of VR games can lead to improvements of selected cognitive functions?

- Design criteria:
 - natural inclusion of physical space (of the CAVE) to game design
 - adherence to the cognitive goals
 - appropriate difficulty
 - relatively fast and effective implementation
Experiment design

- **Experimental group (n=15+):** 2-3x CDT to control learning effect, 2-3 EEG measurements (16 channels in posterior cortex), 10 trainings within 2-3 weeks
- **Control group (n=15+):** no treatment (training)
- **User questionnaire to fill-in** (current emotions, immersion...)
- **Preselection of participants, match-pairs,...**
CAVE system

- Compact fully immersive VR environment - 2.5 x 2.5 x 3 m display area
- 250 degree panoramic view
 - provided by 20 LCD screens
- 7 sided hexagon shape
- Computing cluster structure
- Head Tracking (OptiTrack)
- OpenSG visualisation core

(Built at LIRKIS lab, TU Košice)
Tower defense game

- Several levels of difficulty (increasing → CogInfoCom)
 - to preserve “flow” (Csíkszentmihályi, 1975)
- Friendly objects can change after some time, partial visibility possible
TD game parameters and visualization

<table>
<thead>
<tr>
<th>Property</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed</td>
<td>speed of the drone.</td>
</tr>
<tr>
<td>droneShotPower</td>
<td>turret damage by one drone shot.</td>
</tr>
<tr>
<td>droneShotProb</td>
<td>probability that the drone hits the turret.</td>
</tr>
<tr>
<td>droneShotFreq</td>
<td>drone fire rate.</td>
</tr>
<tr>
<td>dronePassEv2City</td>
<td>defines how the drone affects the defended location.</td>
</tr>
<tr>
<td>dronePassEv2Turret</td>
<td>after passing the turret (positively or negatively).</td>
</tr>
<tr>
<td>dronePassEvProb</td>
<td>defines how the drone affects the turret after passing it (positively).</td>
</tr>
<tr>
<td></td>
<td>probability that the previous two effects happen.</td>
</tr>
</tbody>
</table>

YOU LOST
Enemies drons destroys city
Your time: 37 s
Destroyed drones: 4
Escaped drones: 15
Change detection task (CDT)

- applied before and after training in VR, responses stored
Measuring brain signatures

- event-related potentials (ERPs), i.e. time- and phase-locked electrical responses of the brain to a specific event
- due to background EEG (“noise”), averaging over more trials (40+) necessary
- ERP protocols for testing visual working memory and spatial attention were implemented
- experimental design (Vogel & Machizawa, 2004) – elicits contralateral delay activity (CDA) component of ERP
- CDA = well-defined neural correlate of working memory capacity (Luria et al, 2016)
 - (cognitive operations of) maintenance and filtering
Contralateral delay activity (CDA)

Vogel & Machizawa (2004)
Summary

- We outlined a more ecologically valid experiment using 3D training (testing in 2D)
- Game design (for CAVE) is being finalised, preliminary testing done
- CDT (for pre/post test) protocol is ready
- Experimental group ready-to-go in October
- Our goal: to find an effect (of VR), both behaviorally and neurally

Thank you for your attention.