Assessment and training of visuospatial cognitive functions in virtual reality: proposal and perspective

Štefan Korečko, Marián Hudák, Branislav Sobota Technical University in Košice

Martin Marko, Barbora Cimrová, Igor Farkaš Comenius University in Bratislava

Roman Rosipal

Institute of Measurement Science, Slovak Academy of Sciences

9th IEEE Int. Conference on Cognitive InfoCommunications, 2018, Budapest

Visuospatial functions

- detection, representation, manipulation, and storage
- allow us to perceive objects, locate their position in space, orient our attention, infer spatial relations, and remember the scene
- enable performing judgments related to direction and distance among external objects and thus allow us to navigate
- focus of psychologists and neuroscientists who have tools how to measure, train and restore them (Baddeley, 2012; Shepard & Metzler, 2011; Polaná et al., 2012; Toril et al., 2016; Barman et al., 2016)

Linking behavior to brain

cognitive neuroscience approach

Testing visuospatial functions

- focus on either simple (automatic) processes or complex ones (deliberative), involving visuospatial short-term or working memory, mental rotations, and executive visual attention (Dijkstra, et al, 2017; Shipstead, 2012)
- Trainings and restoration programs employ brain plasticity (Paulus, 2011)
- Typical training/testing in 2D (reduction of real-life complexity)
- Concerns can be raised w.r.t. (Neubauer et al., 2010)
 - ecological validity
 - generalization of the findings
 - optimization of the training and restoration programs

Using virtual reality games

- (3D) virtual environments may modulate neuropsychological measures (Schultheis et al, 2002; Matheis et al, 2007; Parsons et al, 2017)
- Research question: Which elements of VR games can lead to improvements of selected cognitive functions?
- Design criteria:
 - natural inclusion of physical space (of the CAVE) to game design
 - adherence to the cognitive goals
 - appropriate difficulty
 - relatively fast and effective implementation

Experiment design

- Experimental group (n=15+): 2-3x CDT to control learning effect, 2-3 EEG measurements (16 channels in posterior cortex), 10 trainings within 2-3 weeks
- Control group (n=15+): no treatment (training)
- User questionnaire to fill-in (current emotions, immersion...)
- Preselection of participants, match-pairs,...

CAVE system

- Compact fully immersive VR environment 2.5 x 2.5 x 3 m display area
- 250 degree panoramatic view
 provided by 20 LCD screens
- 7 sided hexagon shape
- Computing cluster sctructure
- Head Tracking (OptiTrack)
- OpenSG visualisation core

(Built at LIRKIS lab, TU Košice

Tower defense game

- Several levels of difficulty (increasing \rightarrow CogInfoCom)
 - to preserve "flow" (Csíkszentmihályi, 1975)
- Friendly objects can change after some time, partial visibility possible

TD game parameters and visualization

Property	Meaning
speed	speed of the drone.
droneShotPower	turret damage by one drone shot.
droneShotProb	probability that the drone hits the turret.
droneShotFreq	drone fire rate.
dronePassEv2City	defines how the drone affects the defended location. after passing the turret (positively or negatively).
dronePassEv2Turret	defines how the drone affects the turret after passing it (positively).
dronePassEvProb	probability that the previous two effects happen.

Change detection task (CDT)

• applied before and after training in VR, responses stored

Measuring brain signatures

- event-related potentials (ERPs), i.e. time- and phase-locked electrical responses of the brain to a specific event
- due to background EEG ("noise"), averaging over more trials (40+) necessary
- ERP protocols for testing visual working memory and spatial attention were implemented
- experimental design (Vogel & Machizawa, 2004) elicits contralateral delay activity (CDA) component of ERP
- CDA = well-defined neural correlate of working memory capacity (Luria et al, 2016)
 - (cognitive operations of) maintenance and filtering

Contralateral delay activity (CDA)

Summary

- We outlined a more ecologically valid experiment using 3D training (testing in 2D)
- Game design (for CAVE) is being finalised, preliminary testing done
- CDT (for pre/post test) protocol is ready
- Experimental group ready-to-go in October
- Our goal: to find an effect (of VR), both behaviorally and neurally

Thank you for your attention.