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Abstract. To improve the measurement and differentiation of normal
and abnormal brain function we are developing new methods to decom-
pose multichannel (electroencephalogram) EEG into elemental compo-
nents or “atoms.” We estimate EEG atoms using multiway analysis,
specifically parallel factor analysis or PARAFAC for modeling. Acti-
vation sequences of EEG atoms can identify functional brain networks
dynamically, with much finer time resolution than fMRI. For example,
EEG atoms activate in specific combinations during the sequential op-
erations of brain networks, such as Default Mode, Somatomotor, Dorsal
Attention and others. Guided by the score values of the identified atoms
we inferred the volumetric brain sources of the selected networks using
the sLORETA pseudoinverse algorithm. To confirm network identities,
we compared 2-D and 3-D functional network maps derived from EEG
atoms to known functional neuroanatomy of the networks. We find that
multichannel EEGs in most individuals can be accounted for by a set
of five to six standard atoms, which parallel classical EEG bands, and
have unique power spectra, scalp and cortical topographies. We discuss
how we may use the activation sequences of these atoms to describe the
dynamic interplay of functional brain networks.

Keywords: atomic decomposition of EEG, parallel factor analysis, low
resolution brain electromagnetic tomography

1 Introduction

Despite extensive prior efforts to develop physiological methods for monitoring
different brain state conditions, these methods are still unreliable in many practi-
cal aspects. For example, the performance of most methods is unduly influenced
by day-to-day or subject-specific variability. Electroenheplaograms (EEGs) are
considered to be the gold standard for objective detection of many functional
brain states and currently may be recorded and analyzed in almost any occupa-
tional setting. However, EEGs are usually recorded as a high-dimensional time-
space distributed data. Conventional 2-D decomposition techniques are not ide-
ally suited to reveal the existing latent data structure of EEGs, because unfolding
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2-D decompositions can be done in several ways, and interactions of dimensions
are not modeled well in 2-D decompositions. Recently, promising results were
achieved by applying multi-way decomposition models such as PARAFAC to
EEG data [5, 6, 9].

Recent studies and analysis of functional magnetic resonance imaging (fMRI)
during resting state conditions revealed a new challenging approach to explore
the brain’s functional organization [8]. This may not only lead to better under-
standing of brain functioning and organization, but also of altered conditions of
this anatomical and functional organization due to neurological or psychiatric
diseases, or even due to variability in mental and cognitive functioning.

The connection between resting state cortical processes and EEG activation
at the scalp has been the subject of several recent studies [4]. However, in spite
of great efforts in this direction, a clear answer and established methodology re-
vealing this important cortico-scalp connection remains an open research ques-
tion. Using multi-way decomposition models we analyzed EEG data recorded
from participants in a study consisting of resting state conditions, neurofeed-
back training, continuous performance test (CPT) and the lateralized attention
network test (LANT) [2]. In this study, we applied the PARAFAC model to
EEGs recorded under resting and mentally active conditions and we identified a
set of standard atoms corresponding to physiologically recognized EEG rhythms
and topologies. Next, we used score values of these atoms to identify their levels
of activation and used this information to select the corresponding EEG seg-
ments. Finally, we used low resolution brain electromagnetic tomography method
(sLORETA [7]) to identify cortical activation corresponding to the selected EEG
segments. This revealed elements of functional cortical networks and organiza-
tion observed in other studies. This represents novel way of combining multi-way
decomposition models with EEG-based cortical mapping methods.

2 Methods

2.1 Data acquisition and preprocessing

UCLA students were recruited for behavioral testing with EEG monitoring. Par-
ticipants were randomly assigned to experimental groups differing in biofeedback
training protocols and they spent approximately six hours across five testing ses-
sions. Participants were seated in front of a computer. A BioSemi / ActiveTwo
system was applied to each participant’s head, and 66-channel EEG was recorded
(64-channel QuickCap plus ear electrodes). Several minutes of resting baseline
EEG was recorded prior and after the training. In this pilot study we analyzed
only selected subsets of resting-state recordings with the aim of improving our
approach before performing more thorough analyses.

The EEGs were originally sampled at 512 Hz and digitally down sampled to
128 Hz using appropriate acausal antialiasing filters.. Data were re-referenced
using the average reference method. Next, the data were segmented into 1-s long
windows with no overlap. For each segment the positive logarithmic power spec-
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tral density (PSD) was computed using the fast Fourier method with Hann win-
dowing. Frequencies in the range of 0 to 64 Hz were considered in this study. This
procedure was repeated for each EEG channel separately and a three-dimensional
matrix X(I × J ×K) with I time segments, J electrodes and logarithmic PSD
estimates at K frequencies was constructed.

2.2 The PARAFAC model

A three-way PARAFAC model was applied to data. PARAFAC can be seen as
a generalization of PCA for dealing with multi-dimensional data [1]. However,
the uniqueness of the obtained decomposition gives the PARAFAC model an
unsurpassed advantage [1]. Three loading matrices, A, B , and C with elements
aif , bjf , and ckf defines the model that can be mathematically described as

xijk =
∑F

f=1 aifbjfckf + εijk , where εijk are the residual elements or errors
and F stands for number of components or atoms that are considered. The load-
ings elements are then found by minimizing the sum of squares of the residuals
εijk [1], that is minaif bjf ckf

‖xijk −
∑F

f=1 aifbjfckf‖ For the analyses reported
here we used proprietary Matlab codes developed by Pacific Development and
Technology, LLC, and subroutines from the N-way toolbox for Matlab [3].

2.3 sLORETA

EEGs as measured on the scalp represent a collection of neuronal post-synaptic
processes at the cortical level. sLORETA is a technique solving the inverse prob-
lem; that is, an estimate of cortical activation corresponding to the scalp EEG [7].
sLORETA estimates an image of cortical activation (inferred by current-source
density estimates) for every sample time-point. To separate EEG into segments
of specific spatial and frequency based scalp activation patterns we used multi-
way atomic decomposition of EEG and we defined segments of EEG based on
the atomic score values. This allowed us to combine different atomic activations
and to study the corresponding cortical patterns. For every set of EEG segments
we computed sLORETA cortical activations and in the post-processing analysis
we averaged these cortical activation values.

3 Results

We analyzed data from six subjects attending the protocol across five successive
days. We used the PARAFAC model with a uni-modality constraint on spectral
loadings and a non-negativity constraint on spatial and time loadings [1]. Each
experimental condition (resting state eyes open and closed, biofeedback train-
ing, CPT and LANT) was considered separately. Visually inspecting spatial and
spectral loadings of each extracted PARAFAC component we were able to iden-
tify five to six stable atoms including theta (4-7 Hz ), alpha1 (9-11 Hz), alpha2 or
senosrimotor rhythm (SMR) (12-15 Hz), beta1 (15 - 18 Hz) and beta2 (22-30).
The topographical distribution and spectral characteristics of these atoms are
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depicted in Fig. 1. The beta2 atom has a similar topological distribution to the
beta1 atom but with spectral peak closer to 21 Hz.
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Fig. 1. Left: Topomap of the four extracted atoms. SMR - senosrimotor rhythm. Right:
Spectral characteristics of the four extracted atoms.

Next, we selected segments of EEG corresponding to high or low score vectors
of the extracted atoms or their combination1 Using the sLORETA software
[7] we estimated cortical activations corresponding to the selected segments.
In Fig. 2 the cortical activation extracted during the low score (less than 0.25
of the rescaled score values into the 0 to 1 interval) and high (greater than
0.75) scores values of the alpha atom for eyes open condition during the resting
state is depicted. This volumetric plot shows of strong cortical activation in
the left superior frontal gyrus (Broadman area 11) for low scores values, while
EEG segments during high score values correspond to strong activation in the
right post central gyrus (Broadman area 5) presumably associated with stronger
alpha oscillations in this resting state condition. By analyzing other experimental
conditions, subjects and sessions we observed activation of cortical networks
associated with resting or mentally active brain states closely matching results
in literature.

4 Conclusions

We are presenting a new approach of combining multi-way atomic decomposition
of EEG with cortical activation mapping. This is a novel way of studying the as-
sociation between scalp EEG and the underlying cortical sources. Although this
initial report describes very interesting results, a thorough detailed analysis and
statistical evaluation of the methodology and results is required and is currently
underway.

1 The score values were re-scaled between 0 and 1, and the threshold values of 0.2 and
0.8 were heuristically determined to set the low and high scores values.
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Fig. 2. Top: Averaged sLORETA corresponding to the low scores of the alpha atom.
Bottom: Averaged sLORETA corresponding to the high scores of the alpha atom.

Acknowledgments

This work was supported by the U.S. Army Research Laboratory Contract No.
W911NF-11-C-0081. R.R. was partially supported by the MZ 2012/56-SAV-6,
VEGA 2/0043/13 and VEGA 1/0503/13 grants.

References

1. Bro, R.: PARAFAC. Tutorial and applications. Chem. and Int. Lab. Syst., 38, 149–
171 (1997).

2. Greene, D.J., et. al.: Measuring attention in the hemispheres: the lateralized atten-
tion network test (LANT). Brain and Cog., 66, 21–31, (2008).

3. Andersson, C.A., Bro, R.: The N-way Toolbox for MATLAB. Chem. and Int. Lab.
Syst., 52, 1–4 (2000).

4. Mantini, D., et. al.: Electrophysiological signatures of resting state networks in the
human brain. Proc. of the Nat. Acad. of Sci., 32, 13170–13175 (2007) .

5. Miwakeichi, F., et. al.: Decomposing EEG data into space-time-frequency compo-
nents using Parallel Factor Analysis. NeuroImage, 22, 1035–1045 (2004) .

6. Mørup, M., et. al.: Parallel Factor Analysis as an exploratory tool for wavelet trans-
formed event-related EEG. NeuroImage, 29, 938–947 (2006) .

7. Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomogra-
phy (sLORETA): technical details. Methods Find. Exp. Clin. Phar. 24, 5–12 (2002).

8. Raichle, M.E.: Two views of brain function: Trends in Cog. Sci., 14, 180–190, (2010).
9. Rosipal, R., Trejo, L. J., Nunez, P. L.: Application of Multi-way EEG Decomposition

for Cognitive Workload Monitoring. In Proc. of the 6th Int. Conf. on PLS and Rel.
Meth., Beijing, China, pp. 145-149, (2009).


	Tensor Methods for Machine Learning (TML2013) - Workshop at 
	ECML/PKDD 2013 Workshop
	Tensor Methods for Machine Learning
	Updated Schedule!
	Workshop Description
	Call for Papers
	Paper Submission
	Important Dates
	Organizers
	Program Committee

	Invited Talks
	Morten Mørup
	Tensor Decompositions for Machine Learning and the Modelling of Neuroimaging Data
	References
	Lieven de Lathauwer

	Advances in (Numerical) Linear Algebra
	References
	Steffen Rendle

	Factorization Machines
	References
	Pauli Miettinen

	Boolean Tensor and Matrix Factorization
	References
	Ali Taylan Cemgil

	Probabilistic Latent Tensor Factorisation, with applications to Audio Processing and Source separation
	References


	Accepted Papers
	Denis Krompaß, Maximilian Nickel, Xueyan Jiang, and Volker Tresp
	Non-Negative Tensor Factorization with RESCAL
	Roman Rosipal, Leonard J Trejo and Eran Zaidel

	Atomic Decomposition of EEG for Mapping Cortical Activation
	Wenjuan Gong, Michael Sapienza and Fabio Cuzzolin

	Fisher Tensor Decomposition for Unconstrained Gait Recognition
	Xueyan Jiang, Volker Tresp and Denis Krompass

	A Logistic Additive Model for Relation Prediction in Multi-relational data
	Praneeth Vepakomma and Ahmed Elgammal

	Embedding Super-Symmetric Tensors of Higher-Order Similarities of High-Dimensional Data
	Further Resources



	Rosipal et al 2013 Atomic Decomposition of EEG for Mapping



