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Abstract

In kernel based methods such as Support Vector Machines, Kernel PCA, Gaussian Pro-
cesses or Regularization Networks the computational requirements scale as O(n3) where n
is the number of training points. In this paper we investigate Kernel Principal Component
Regression (KPCR) with the Expectation Maximization approach in estimating of the
subset of p principal components (p < n) in a feature space defined by a positive definite
kernel function. The computational requirements of the method are O(pn2). Moreover,
the algorithm can be implemented with memory requirements O(p2) +O((p+ 1)n)).

We give the theoretical description explaining how by the proper selection of a subset
of non-linear principal components desired generalization of the KPCR is achieved. On
two data sets we experimentally demonstrate this fact. Moreover, on a noisy chaotic
Mackey-Glass time series prediction the best performance is achieved with p ¿ n and
experiments also suggests that in such cases we can also use significantly reduced training
data sets to estimate the non-linear principal components.

The theoretical relation and experimental comparison to Kernel Ridge Regression and
ε-insensitive Support Vector Regression is also given.

1 Introduction

The kernel-based solution to nonlinear regression has attracted the attention of many re-
searchers. As a result, a unifying framework for Support Vector Machines, Regularization
Networks, Gaussian processes and spline methods was given [8, 38, 39, 31, 12]. Although the
methods were derived from different theoretical assumptions a straightforward connection
between a Reproducing Kernel Hilbert Space (RKHS) and the corresponding feature space
representation of the transformed input data gave rise to this unification. In Section 2 we
will give a basic description of RKHS and feature space and briefly discuss the main results
on non-linear regression tasks formulated in a RKHS.

However, the main drawbacks of these methods is the computational cost of finding the
solution which scales as O(n3) where n is the number of the training examples. Recently,
several different approaches to overcome the problem were proposed [26, 30, 42]. In [21, 23]
we proposed the analog of the Principal Component Regression (PCR) method in a high
dimensional feature space defined by a positive definite kernel function. We named the method
Kernel PCR (KPCR). KPCR is based on the orthogonal rotation of the original regressors
in a feature space. The rotation is defined by the p ≤ n eigenvectors found by the Kernel
Principal Component Analysis (KPCA) method [27, 28]. Although this approach can be very
useful in the case where we are dealing with highly correlated/multicorrelated regressors,
in general, it does not overcome the computational cost as we still need to diagonalize an
(n × n) matrix. However, as we will show later, the KPCR method belongs to the class of
so-called shrinkage estimators where the lower variance of the estimated regression coefficients
is achieved by exploiting only a subset of the eigenvectors which generally correspond to the
largest eigenvalues. Moreover, in [23] we also experimentally demonstrated that in some cases
the estimation of the eigenvectors from a lower number m < n training data points followed
by projection of the remainder of the training data to the extracted eigenvectors does not
significantly degrade the final performance. This gives rise to the question of the possibility of
using algorithms for iterative estimation of the first p eigenvectors either from the whole (n×n)
or reduced (m ×m) matrices. To this end, in this paper we investigate the performance of
KPCR using the non-linear principal components extracted by the Expectation Maximization
KPCA (EMKPCA) algorithm originally proposed in [20]. The computational complexity of
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the algorithm is O(pn2) and we do not need to store the whole (n × n) matrix . In fact the
memory requirements are O(p2) +O((p+ 1)n)).

The classical PCR technique is a well known shrinkage estimator designed to deal with
multicollinearity (see e.g. [6, 18, 10]). The multicollinearity or near-linear dependence of
regressors is a serious problem which can dramatically influence the effectiveness of a regres-
sion model. Multicollinearity results in large variances and covariances for the least-squares
estimators of the regression coefficients. Multicollinearity can also produce estimates of the
regression coefficients that are too large in absolute value. Thus the values and signs of es-
timated regression coefficients may change considerably given different data samples. This
effect can lead to a regression model which fits the training data reasonably well, but in gen-
eral poor generalization of the model can occur. This fact is in a very close relation to the
argument stressed in [31], where the authors have shown that choosing the flattest function1

in a feature space can, based on the smoothing properties of the selected kernel function, lead
to a smooth function in the input space.

Two methods which deal with multicollinearity are Ridge Regression (RR) and PCR. We
will give the theoretical basis of (Kernel) PCR and will also highlight the relation to the
Kernel RR (KRR) [25, 5, 3] technique in a kernel defined feature space. Moreover, we will
show that the final solution of KPCR leads to the same form as defined by the Representer
Theorem [13] which unifies the solutions of the Support Vector Machines, Regularization
Networks, Gaussian processes and spline methods in a RKHS.

On two data sets, the chaotic Mackey-Glass time series prediction and on the problem
of estimation of the human signal detection performance from the Event Related Poten-
tials (ERPs), we compared KPCR, KRR and Support Vector Regression (SVR)2 [38, 29, 3]
techniques. We demonstrate that both KPCR and KRR techniques achieves similar results,
however, in the case of KPCR the final linear model in a feature space is significantly smaller;
i.e. only p < n eigenvectors are utilized. On the real data set, the performance of the KPCR
and KRR models using the quadratic cost function is slightly superior to SVR. This suggests
that on that particular data set a Gaussian type of noise is more likely; i.e. the regression
models with a quadratic cost function are preferable.

In Section 2 a basic definition of a RKHS and formulation of the Representer Theorem is
given. Section 3 describes the Kernel PCA algorithm and also shows the connection to the
recently used Nyström approximation of the eigenfunction decomposition of a kernel function.
In Section 4 the EM approach to Kernel PCA is given. KPCR and KRR are described and
compared in Section 5. The question of an unpenalized bias term in the case of KRR is also
discussed. Section 6 describes the data sets and the results are given in Section 7. Section 8
provides a short discussion and concludes the paper.

2 RKHS and Representer Theorem

The common aim of Support Vector Machines, Regularization Networks, Gaussian processes
and spline methods is to address the poor generalization properties of existing regression
techniques. To overcome this problem a regularized formulation of regression is considered as

1The flatness is defined in the sense of penalizing high values of the regression coefficients estimate.
2In this paper we are assuming a SVR model with the ε−insensitive cost function.
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a variational problem

min
f∈H

Rreg(f) =
1

n

n
∑

i=1

V (yi, f(xi)) + ξ‖f‖2H (1)

leading to a solution of the form

f(x) =
n

∑

i=1

ciK(xi,x) (2)

for any differentiable loss function V [39, 5]. ξ is a positive number (regularization term) to
control the tradeoff between approximating properties and the smoothness of f . We assume
a training set of regressors {xi}ni=1 to be a subset of a compact set X ⊆ RN and {yi}ni=1 ∈ R
to be a set of corresponding outputs. ‖f‖2H is a squared norm (sometimes called ”stabilizer”
in regularization networks domain) in a RKHS H [1] defined by the positive definite kernel
K(x,y); i.e. a symmetric function of two variables satisfying the Mercer theorem condi-
tions [15]. The fact that for any such positive definite kernel there exists a unique RKHS
is well established by the Moore-Aronszajn theorem [1]. The form K(x,y) has the following
reproducing property

f(y) = 〈f(x),K(x,y)〉H ∀f ∈ H
where 〈., .〉H is the scalar product in H. The function K is called reproducing kernel for H.

It follows from Mercer’s theorem that each positive definite kernel K(x,y) can by written
in the form

K(x,y) =
M
∑

i=1

λiφi(x)φi(y) M ≤ ∞ (3)

where {φi(.)}Mi=1 are the eigenfunctions of the integral operator TK : L2(X)→ L2(X)

(TKf)(x) =

∫

X
K(x,y)f(y)dy ∀f ∈ L2(X)

and {λi > 0}Mi=1 are the corresponding positive eigenvalues. The sequence {φi(.)}Mi=1 creates
an orthonormal basis of H and we can express any function f ∈ H as f(x) =

∑M
i=1 aiφi(x)

for any ai ∈ R. This allows us to define a scalar product in H:

〈
M
∑

i=1

aiφi(x),
M
∑

i=1

biφi(x)〉H ≡
M
∑

i=1

aibi
λi

and the squared norm ‖f‖2H =
∑M

i=1
a2

i

λi
. Rewriting (3) in the form

K(x,y) =
M
∑

i=1

√

λiφi(x)
√

λiφi(y) = (Φ(x),Φ(y))F

it becomes clear that any kernel K(x,y) also corresponds to a canonical (Euclidean) dot
product in a possibly high dimensional space F where the input data are mapped by

Φ : X → F
x→ (

√
α1φ1(x),

√
α2φ2(x), . . . ,

√
αMφM (x))

(4)
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The space F is usually denoted as a feature space and {{φi(x)}Mi=1,x ∈ X} as feature mappings.
The number of basis functions φi(.) also defines the dimensionality of F . It is worth noting,
that we can also construct a RKHS and a corresponding feature space by choosing a sequence
of linearly independent functions (not necessary orthogonal) {ψi(x)}Mi=1 and positive numbers
αi to define a series (in the case of M =∞ absolutely and uniformly convergent)

K(x,y) =
M
∑

i=1

αiψi(x)ψi(y).

This also gives the connection between the RKHS and Gaussian processes [39] where the K
is assumed to represent the correlation function of a zero-mean Gaussian process evaluated
at points x and y.

Until now, we assumed that K is a positive definite kernel. However, the above results
can be extended even for the case when K is a positive semidefinite. Is such a case a RKHS
H contain a subspace of functions f with a zero norm ‖f‖H (the null space). It was shown
in [13] that in such a case the solution of (1) has the more general form

f(x) =
n

∑

i=1

ciK(xi,x) +
l

∑

j=1

bjζj(x) (5)

where the functions {ζj(.)}lj=1 span the null space of H and the coefficients {ci}ni=1, {bj}lj=1

are again given by the data. In this paper we will consider only the case when l = 1 and
ζ1(x) = const ∀x. Using the positive definite kernel K, similar to the Gaussian kernel,
leads to the construction of the RKHS with an empty null space. To make the regression
techniques discussed later invariant with respect to the variable locations it may be very
useful to redefine a kernel K to contain a null space of constant functions. We will return to
this point in Section 5.

3 Kernel PCA

The PCA problem in a high-dimensional feature space F can be formulated as the diagonal-
ization of an n-sample estimate of the covariance matrix

Ĉ =
1

n

n
∑

i=1

Φ(xi)Φ(xi)
T , (6)

where Φ(xi) are centered nonlinear mappings of the input variables {xi}ni=1 ∈ RN (we will
return to the point of centralization of the data in F at the end of this section). The di-
agonalization represents a transformation of the original data to new coordinates defined by
orthogonal eigenvectors v. We have to find eigenvalues λ ≥ 0 and non-zero eigenvectors v ∈ F
satisfying the eigenvalue equation

λv = Ĉv.

Realizing, that all solutions v with λ 6= 0 lie in the span of mappings Φ(x1) , . . . ,Φ(xn), the
equivalent eigenvalue problem was derived [27, 28]

nλα = Kα, (7)
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where α denotes the column vector with coefficients α1, ..., αn such that

v =
n

∑

i=1

αiΦ(xi) (8)

and K is a symmetric (n× n) Gram matrix with the elements

Kij = (Φ(xi).Φ(xj)) = K(xi,xj).

Normalizing the solutions vk corresponding to the non-zero eigenvalues λ̃k = nλk of the
matrix K, translates into the condition λ̃k(α

k.αk) = 1 [27]. Finally, we can compute the k-th
nonlinear principal component of x as the projection of Φ(x) onto the eigenvector vk

βk(x) ≡ (vk.Φ(x)) =
1√
nλk

n
∑

i=1

αkiK(xi,x) = λ̃
−1/2
k

n
∑

i=1

αkiK(xi,x) . (9)

Denote by V the matrix consisting of the columns created by the eigenvectors {vi}pi=1 of
Ĉ, let Ṽ be the matrix created by the extracted eigenvectors {αi}pi=1 of K and let Λ̃ be a
diagonal matrix diag(λ̃1, λ̃2, . . . , λ̃p) of the corresponding eigenvalues. Using this notation,
for the projection of original (training) data points {xi}ni=1 we may re-write (9) into matrix
form

P = ΦV = ΦΦT ṼΛ̃−1/2 = KṼΛ̃−1/2 = ṼΛ̃1/2, (10)

where we used the fact that V = ΦT ṼΛ̃−1/2. Similarly, for the projection of test data points
{xi}n+nt

i=n+1 which were not used to estimate the eigenvectors and eigenvalues we may write

Pt = ΦtΦ
T ṼΛ̃−1/2 = KtṼΛ̃

−1/2, (11)

where Φt is the (nt ×M) matrix of the mapped testing data points {Φ(xi)}n+nt
i=n+1 and Kt is

the (nt × n) ‘test’ matrix whose elements are

(Kt)ij = (Φ(xi).Φ(xj)) = K(xi,xj),

where {xi}n+nt
i=n+1 and {xj}nj=1 are testing and training points, respectively.

We used λ̃k to stress the difference between the eigenvalues of the K matrix and the
eigenvalues of (7) to give the connection to the Nyström approximation recently used in [42].
The authors have used the eigenfunction decomposition of the kernel function K to find the
orthogonal eigenfunctions spanning the RKHS space H.3 The Nyström approximation to the
k-th eigenfunction is given by

φk(x) =
1√
nλk

n
∑

i=1

φk(xi)K(xi,x), (12)

where the eigenfunctions {φk(xi)}nk=1 at the points {xi}ni=1 and corresponding eigenvalues
{λk = λ̃k/n}nk=1 are given by the solution of matrix problem (7). Thus, although in the

3The authors studied the more general eigenfunctions problem
∫

K(x,y)p(x)φi(x)dx = λiφi(y), where
also the probability density p(x) of the input data points was taken into account. This leads to interesting
theoretical results about dependence of the eigenspectrum and eigenfunctions on the input data distribution
(see [42]). However, for the purposes of our comparison we will not explicitly use this fact as we can still
implicitly assume that our data are sampled by some p(x).
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case of infinite dimensional RKHS4 we can theoretically recover an infinite number of the
eigenfunctions with positive eigenvalues in practice we are constrained to the number specified
by the number of observations.

In fact, KPCA transforms the problem of the diagonalization of the covariance matrix in
the feature space F to the same matrix approximation of the eigenfunctions decomposition
of kernel K as used in [42]; i.e. equation (7). In the case that we have n linearly indepen-
dent vectors {Φ(xi)}ni=1, we can recover the orthonormal basis of eigenvectors with positive
eigenvalues spanning a corresponding n-dimensional subspace of a feature space. Then, the
eigenvector vk can be seen as a feature space representation of the k-th eigenfunction φk(x)
(evaluated at the points {xi}ni=1) ‘embedded’ into a n-dimensional subspace of F defined by
vectors {Φ(xi)}ni=1. Moreover, the uniqnuess of the solution of (7) allows us to use notation
{φk(xi) = αk(xi) ≡ αki }nk=1 leading to the equality βk(x) = φk(x)

√
λk.

In fact, it was pointed out in [42] that the projections (9) and (12) are the same up to the
scaling factor. In the case of (9), the scaling in all possible eigendirections of the n-dimensional
subspace of F defined by the observed data is the same. On the other hand, the projection
(12) scales the data in the individual directions by the factor 1√

λk
. This may lead to different

results on methods which are not scale invariant. In Section 5 we will show that this is not a
case when KPCR is assumed.

At the beginning of the section we assumed that we are dealing with centered data Φ(x)
in a feature space. However, in practical computation, the centralization of the data leads to
the modification of K and Kt matrices

K← (I− 1

n
1n1

T
n )K(I− 1

n
1n1

T
n ), (13)

Kt ← (Kt −
1

n
1nt1

T
nK)(I− 1

n
1n1

T
n ), (14)

where 1n and 1nt represent the vectors of ones of the length n and nt, respectively, and
I is n dimensional identity matrix.5 The eigenfunction decomposition of the centralized
K matrix will now lead to the new eigenfunctions basis which is only orthogonally rotated
compared to the eigenfunctions basis {φk(x)}ni=1 of the original matrix K, however, in general
the estimated eigenspectrums will differ.

In the case where we would like to extract only a subset of principal components and/or
we are dealing with large data sets, then the direct diagonalization (if it is computationally
possible) of the K matrix can be disadvantageous compared for the estimation of the prede-
fined number of principal components. In the next section we describe a probabilistic PCA
model in a feature space using the EM algorithm to find the desired principal subspace.

4 An EM Approach to Kernel PCA

Let us first define a probabilistic PCA model x = Qy+ η in the input space RN , where Q is
a RN×p matrix and the observation vector and latent variable vectors are given as x ∈ RN

4Here we define the dimensionality of RKHS by the by the number of eigenfunctions with a positive
eigenvalues spanning the space.

5Because the matrix (I − 1
n
1n1T

n ) is of rank (n − 1) the centralized K matrix will have rank less than or
equal to (n − 1); i.e. rank(K) ≤ (n − 1). Effectively it means that by solving (7) using the centralized K

matrix, we may obtain up to (n − 1) different non-zero eigenvectors in the case n ≤ M and up to the M
eigenvectors in the case n > M .
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and y ∈ Rp, respectively. The latent variables are normally distributed with zero mean and
identity covariance. The zero mean noise η is also normally distributed with a covariance
matrix defined as Ψ. It is shown in [24, 34] that as the noise level in the model becomes
infinitesimal the PCA model is recovered. The posterior density then becomes a delta function
P (y|x) = δ(y − (QTQ)−1QTx) and the EM algorithm is effectively a straightforward least
squares projection [24] which is given below. We denote the matrix of data observations as
X ∈ RN×n and the matrix of latent variables as Y ∈ Rp×n. Then
E-Step Y = (QTQ)−1QTX

M-Step Qnew = XYT (YYT )−1 .
It has been shown in [34] that, in the case of infinitesimal small noise in our model (i.e.

Ψ = limσ2→0 σ
2I), the maximum-likelihood estimate of Q at convergence will be equal to

QML = VΛ1/2R, (15)

where the columns of the V matrix are the eigenvectors of the sample covariance matrix with
corresponding eigenvalues λ1, ..., λp being the diagonal elements of the diagonal matrix Λ,
and R is an arbitrary orthogonal rotation matrix. In [34], the authors also pointed out, that
taking the columns of RT to be equal to the eigenvectors of the QT

MLQML matrix, we can
recover the true principal axes.

Motivated by this result, in [20]6, we proposed the EM approach to Kernel PCA which is
based on the nonlinear mapping of the input data to feature space F by a map Φ : RN → F .

Again, the centering in the feature space F can be carried out in a straightforward manner
by ‘centering’ the kernel matrix K outlined in the end of the previous section.

Realizing that the Q matrix may by obtain by scaling and rotation of the V matrix (15)
consisting of eigenvectors computed by diagonalization of the sample covariance matrix we
can express the rth column ofQ asQr =

∑n
j=1 γ

r
jΦ(xj) [34, 27] and write it in matrix notation

as ΦTΓ, where the matrix Φ is the matrix which has individual rows consisting of the vectors
Φ(x1), . . . ,Φ(xn) of the mapped observed data and the Γ is an (n×p) matrix of the coefficients
{γri : i = 1, . . . , n; r = 1, . . . , p}. Using the ‘kernel’ trick, i.e. Φ(x1)

TΦ(x2) = K(x1,x2) we
can see that the E-step will now be

Y = (ΓTKΓ)−1ΓTK . (16)

Now let us consider the M-Step. Denote the term YT (YYT )−1 by A. Than we may write

Qnew = ΦTA,

where Qnew = ΦTΓnew. Thus we have the M-step

Γnew = A = YT (YYT )−1. (17)

This choice of Γnew is unique for the case when the ΦT matrix has rank(ΦT ) = n, otherwise
it is one of the possible solutions for ΦTΓnew = ΦTA. Finally, after convergence of the
proposed kernel-based EM algorithm, the projection of the new point x onto the corresponding
p nonlinear principal components is given by

β(x) ≡ (QTQ)−1QTΦ(x) = (ΓTKΓ)−1ΓTk, (18)

6For the clarity with the other sections we switched the x and y notation comparing to the original paper
and also used Q matrix notation instead of C.
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where k is the vector [K(x1,x), ...,K(xn,x)]
T . This projection is up to the scaling and

rotation identical to the projection of the data point x using the eigenvectors of the covariance
matrix Ĉ given by (9). In the next chapter these projections are used as input data to
rotationally and scaling invariant ordinary least squares regression method and in such a case
we even do not need to find true principal axes as given by Kernel PCA algorithm. However,
in Appendix A we have shown how the estimation of eigenvalues {λi}pi=1 and consequently the
normalization of the projection to avoid the different scaling in the individual eigendirections
can be achieved.

We should note a number of points regarding this method for performing Kernel PCA.
Firstly, due to the use of the Mercer kernels the method is independent of the dimensionality
of the input space. Secondly, the computational complexity, per iteration, of the proposed EM
method for Kernel PCA is O(pn2) where n is the number of data points and p is the number
of extracted components. Where a small number of eigenvectors require to be extracted and
there are a large number of data points available this method is comparable in complexity
to the iterative power method which has complexity O(n2). Direct diagonalization of a
symmetric K matrix to solve the eigenvalue problem for Kernel PCA [27] has complexity
of the order O(n3). From the equations (16) and (17) we can also see, that individual EM
steps can be performed without storing whole (n × n) matrix K. In such a case memory
requirements scale as O(p2) + O((p + 1)n) (in Appendix B possible implementations of the
algorithm are discussed). However, this will slow down the computations as the elements ofK
have to be computed repeatedly. The balance between the speed and memory requirements
can be achieved by allocating another (p× n) matrix (see Appendix B).

5 Feature Space Regularized Linear Regression

5.1 Kernel Principal Component Regression

Consider the standard regression model in feature space F

y = Φγ + ε, (19)

where y is a vector of n observations of the dependent variable, Φ is an (n ×M) matrix of
regressors whose i-th row is again the vector Φ(xi) of the mapped xi observation intoM ≤ ∞
dimensional feature space F , γ is a vector of regression coefficients and ε is the vector of error
terms whose elements have equal variance σ2, and are independent of each other. We also
assume that regressors {Φj(x)}Mj=1 are zero-mean. Thus ΦTΦ is proportional to the sample

covariance matrix and Kernel PCA can be performed to extract M eigenvalues {λ̃j}Mj=1 and

corresponding eigenvectors {vj}Mj=1. The k-th principal component of Φ(x) is given by (9).
By projection of all original regressors onto the principal components we can rewrite (19) as

y = Bw + ε, (20)

where B = ΦV is now an (n ×M) matrix of transformed regressors and V is an (M ×M)
matrix whose k-th column is the eigenvector vk. The columns of the matrix B are now
orthogonal and the least squares estimate of the coefficients w becomes

ŵ = (BTB)−1BTy = Λ̃
−1
BTy, (21)
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where Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃M ). The results obtained using all principal components—the
PCA projection of the original regressor variables—in (20) is equivalent to that obtained by
least squares using the original regressors.7

In fact we can express the estimate γ̂ of the original model (19) as

γ̂ = Vŵ = V(BTB)−1BTy =
M
∑

i=1

λ̃−1
i v

i(vi)TΦTy

and its corresponding variance-covariance matrix [10] as

cov(γ̂) = σ2V(BTB)−1VT = σ2VΛ̃
−1
VT = σ2

M
∑

i=1

λ̃−1
i v

i(vi)T (22)

To avoid the problem of multicollinearity PCR uses only some of the principal components. It
is clear from (22) that the influence of small eigenvalues can significantly increase the overall
variance of the estimate. PCR simply deletes the principal components corresponding to
small values of the eigenvalues λi, i.e. the principal components where multicollinearity may
appear. The penalty we have to pay for the decrease in variance of the regression coefficient
estimate is bias in the final estimate. However, if multicollinearity is a serious problem, the
introduced bias can have a less significant effect in comparison to a high variance estimate.
If the elements of w corresponding to deleted regressors are zero, an unbiased estimate is
achieved [10].

Using the first p-nonlinear principal components (9) to create a linear model based on
orthogonal regressors in feature space F we can formulate KPCR model as

f(x, c) =
p

∑

k=1

wkβk(x) + b =
p

∑

k=1

wkλ̃
−1/2
k

n
∑

i=1

αkiK(xi,x) + b =
n

∑

i=1

ciK(xi,x) + b, (23)

where {ci =
∑p

k=1wkλ̃
−1/2
k αki }ni=1 and b is a bias term.

We have shown that by removing the principal components whose variances are very small
we can eliminate large variances of the estimate due to multicollinearities. However, if the
orthogonal regressors corresponding to those principal components have a large correlation
with the dependent variable y such deletion is undesirable (experimentally demonstrated in
[22]). There are several different strategies for selecting the appropriate orthogonal regressors
for the final model (see [10, 11] and ref. therein). In [22] we considered the Covariance
Inflation Criterion [33] for model selection in KPCR as a novel alternative to methods such
as cross-validation.

5.2 Kernel Ridge Regression

KRR is another technique to deal with multicollinearity by assuming the linear regression
model (19) whose solution is now achieved by minimizing

Rrr(γ) =
n

∑

i=1

[yi − f(xi,γ)]2 + ξ‖γ‖2, (24)

7PCR, as well as other biased regression techniques, is not invariant to the relative scaling of the original
regressors [6]. However, similar to ordinary least squares regression the solution of (20) does not depend on
a possibly different scaling in individual eigendirections used in KPCA transformation. The solution is also
invariant to the orthogonal rotation and in the case of EM approach to KPCA we do not need to use rotation
given by the matrix R to recover the true principal axes.
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where f(x,γ) = γTΦ(x) + b and ξ is a regularization term. The least-squares estimate of
γ is biased but the variance is decreased. Similar to the KPCR case we can express the
variance-covariance matrix of the γ estimate [10] as

cov(γ̂) = σ2
M
∑

i=1

λ̃i(λ̃i + ξ)−2vi(vi)T .

We can see, that in contrast to KPCR, the variance reduction in KRR is achieved by giving
less weight to small eigenvalue principal components via the factor ξ.

In practice we usually do not know the explicit mapping Φ(.) or its computation in the
high-dimensional feature space F may be numerically intractable. In [25], using the dual
representation of the linear RR model the authors derived the formula for estimation of the
weights γ for the linear RR model y = γTΦ(x) in feature space F ; i.e. (non-linear) KRR.
Again, using the fact that K(x,y) = Φ(x)TΦ(y) we can express the final KRR model in the
dot product form [25, 3]

f(x) = cTk = yT (K+ ξI)−1k , (25)

where K is again an (n × n) Gram matrix consisting of dot products Kij = (Φ(xi).Φ(xj))
i, j = 1, . . . , n; k is the vector of dot products of a new mapped input example Φ(x) and the
vectors of the training set; ki = (Φ(xi).Φ(x)). It is worth noting that the same solution to the
RR problem in the feature space F can also be derived based on the dual representation of the
Regularization Networks minimizing the cost function (1) using the quadratic loss function
V (yi, f(xi)) = (yi − f(xi))2 (see e.g. [9]) or through the techniques derived from Gaussian
processes [41, 3].

We can see that including a possible bias term into the model leads to its penalization
through the ξ term. However, in the case of regression or classification tasks there is no reason
to penalize the shift of f(.) by a constant. It was pointed out in [5], that in the case of a
radial kernel we can overcome this by using a new kernel of the form

K̃(x,y) = K(x,y)− ξ0.

The ξ0 is chosen to construct a new RKHS consisting only of zero-mean functions; i.e. K̃
without the zeroth order Fourier component. Effectively, the new kernel K̃ induces the null
space of the constant functions which are not included in a new RKHS norm and based on
the cost function (1) are not penalized8. Now, the solution (5) will take the form [9, 39, 5]

f(x) =
n

∑

i=1

ciK̃(x,xi) + b̃ =
n

∑

i=1

ci(K(x,xi)− ξ0) + b̃ =
n

∑

i=1

ciK(x,xi) + b (26)

and the unknown coefficients {ci}ni=1, b = b̃−∑n
i=1 ciξ0 can be found by solving the following

system of linear equations [9, 5]

(K̃+ ξI)c+ 1b̃ = (K+ ξI)c+ 1b = y,

n
∑

i=1

ci = 0. (27)

8In fact, we do not need to constrain ourself to the construction of a RKHS with only constant functions
not included in the norm. Similar to the SVR, we can consider a new extra constant term not included in the
norm ‖f‖H and thus ‘balance’ the penalization of the potential constant feature of a initial kernel K by this
new, not penalized, term.
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Thus we still can use a positive definite kernel K as the only change is to estimate new b
term. Let us note that the solution of the SVR, i.e. assuming the linear regression model
y = γTΦ(x) + b in feature space F , leads to the non-linear regression model (26). In fact, in
[32] the authors have shown that using the quadratic loss function in the case of SVR model
transforms the general quadratic optimization problem [29] for finding the estimate of the
weights γ =

∑n
i=1 ciΦ(xi) and b to the solution of the linear equations (27).

Another technique in removing a ‘bias’ term problem is to ‘centralize’ the regression
problem in feature space; i.e. assume the sample mean of the mapped data Φ(xi) and targets
y to be zero. This will lead to the regression estimate f(x,γ) = γTΦ(x) without the bias
term. The centralization of the individual mapped data points Φ(x) can be achieved by the
same ‘centralization’ of the Gram matrix K and vector k given by equation (13) and (14),
respectively.

5.3 Summing Up

Using the analogy with PCR and RR in input data space, a connection between regularized
linear regression models in feature space F corresponding to KPCR and KRR has been
established. Both methods belong to the class of shrinkage estimators; i.e. they shrink the
ordinary least squares solution from the directions of low data spread to directions of larger
data spread. This effectively means that we can achieve the lower variance of estimated
regression coefficients at the cost of a biased estimate. Whilst with KPCR we project the
data mainly to the principal components corresponding to larger eigenvalues, with KRR we
are giving less weight to the smaller eigenvalues. Thus, in both cases we are faced with
a model selection problem; i.e. selection of non-linear principal components in KPCR and
setting the regularization term ξ in KRR, respectively. In KPCR one of the straightforward
model selection criteria is based on choosing the first p principal components describing the
predefined amount of overall variance. If p ¿ n ≤ M , then using the proposed EMKPCA
method having complexity O(pn2) can be highly advantageous. Moreover, on large scale
regression problems, where we can not diagonalize the Gram matrix K, the estimate of the
p¿ n ≤M principal components seems to be the only possible choice. However, in Section 7
we will demonstrate that in some cases the principal components corresponding to relatively
small eigenvalues can have a significant contribution to the performance of KPCR. In such
cases, if it is computationally possible, the extraction of almost the whole spectra of principal
components and using the appropriate model selection criteria can lead to improvement of
KPCR. On the other hand, in the case of KRR the computation complexity scales with O(n3)
and in general we also have to do the search through a wide range of possible values to find
the optimal regularization term ξ . Moreover, on large data set we can not use the direct
method; i.e. inversion of the (n× n) matrix K, and we need to do some approximations as
proposed in [7, 35, 30].

6 Data Sample Construction

6.1 Chaotic Mackey-Glass Time-Series

The chaotic Mackey-Glass time-series is defined by the differential equation

ds(t)

dt
= −bs(t) + a

s(t− τ)
1 + s(t− τ)10
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Figure 1: Display, input device configuration and symbols for task-relevant stimuli for the signal
detection task.

with a = 0.2, b = 0.1. The data were generated with τ = 17 and using a second-order Runge-
Kutta method with a step size 0.1. Training data is from t=200 to t=3200 while test data
is in the range t= 5000 to 5500. To this generated time-series we added noise with normal
distribution and with different levels corresponding to ratios of the standard deviation of the
noise and the clean Mackey-Glass time-series.

6.2 Human Signal Detection Performance Monitoring

We have used Event Related Potentials (ERPs) and performance data from an earlier study
[37, 36, 14]. Eight male Navy technicians experienced in the operation of display systems
performed a signal detection task. Each technician was trained to a stable level of performance
and tested in multiple blocks of 50–72 trials each on two separate days. Blocks were separated
by 1-minute rest intervals. A set of 1000 trials were performed by each subject. Inter-trial
intervals were of random duration with a mean of 3s and a range of 2.5–3.5s. The entire
experiment was computer-controlled and performed with a 19-inch color CRT display (Figure
1). Triangular symbols subtending 42 minutes of arc and of three different luminance contrasts
(0.17, 0.43, or 0.53) were presented parafoveally at a constant eccentricity of 2 degrees visual
angle. One symbol was designated as the target, the other as the non-target. On some blocks,
targets contained a central dot whereas the non-targets did not. However, the association of
symbols to targets was alternated between blocks to prevent the development of automatic
processing. A single symbol was presented per trial, at a randomly selected position on a 2-
degree annulus. Fixation was monitored with an infrared eye tracking device. Subjects were
required to classify the symbols as targets or non-targets using button presses and then to
indicate their subjective confidence on a 3-point scale using a 3-button mouse. Performance
was measured as a linear composite of speed, accuracy, and confidence. A single measure,
PF1, was derived using factor analysis of the performance data for all subjects, and validated

16



0 500 1000 1500

Fz

Se
qu

en
ce

 o
f t

ria
ls 

−−
>

0 500 1000 1500

Cz

Time (ms)
0 500 1000 1500

Pz

Figure 2: Running-mean ERPs at sites Fz, Cz and Pz for subject B in the first 50 running-mean
ERPs.

within subjects. The computational formula for PF1 was

PF1 = 0.33∗Accuracy + 0.53∗Confidence - 0.51∗Reaction Time

using standard scores for accuracy, confidence, and reaction time based on the mean and
variance of their distributions across all subjects. PF1 varied continuously, being high for fast,
accurate, and confident responses and low for slow, inaccurate, and unconfident responses. In
our experiments we linearly normalized PF1 to have a range of 0 to 1.

ERPs were recorded from midline frontal, central, and parietal electrodes (Fz, Cz, and Pz),
referred to average mastoids, filtered digitally to a bandpass of 0.1 to 25 Hz, and decimated
to a final sampling rate of 50 Hz. The prestimulus baseline (200 ms) was adjusted to zero to
remove any DC offset. Vertical and horizontal electrooculograms (EOG) were also recorded.
Epochs containing artifacts were rejected and EOG-contaminated epochs were corrected.
Furthermore, any trial in which no detection response or confidence rating was made by a
subject was excluded along with the corresponding ERP.

Within each block of trials, a running-mean ERP was computed for each trial (Figure
2). Each running-mean ERP was the average of the ERPs over a window that included the
current trial plus the 9 preceding trials for a maximum of 10 trials per average. Within this
10-trial window, a minimum of 7 artifact-free ERPs were required to compute the running-
mean ERP. If fewer than 7 were available, the running mean for that trial was excluded.
Thus each running mean was based on at least 7 but no more than 10 artifact-free ERPs.
This 10-trial window corresponds to about 30s of task time. The PF1 scores for each trial
were also averaged using the same running-mean window applied to the ERPs, excluding PF1
scores for trials in which ERPs were rejected. Prior to analysis, the running-mean ERPs were
clipped to extend from time zero (stimulus onset time) to 1500 ms post-stimulus, for a total
of 75 time points.
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7 Results

The present work was carried out with Gaussian kernels; K(x,y) = e−(
‖x−y‖2

L
), where L deter-

mines the width of the Gaussian function. The Gaussian kernel possesses a good smoothness
properties (suppression of the higher frequency components) and in the case we do not have
a priori knowledge about the regression problem we would prefer a smooth estimate [9, 31].

7.1 Chaotic Mackey-Glass Time-Series

The standard EM convergence proofs [4] and the results on the convergence of EM for PCA
[34] guarantee that after reaching a stable local extremum (which is the global maximum) the
true principal subspace will be recovered. However, for our purposes we would like to exper-
imentally compare the performance of the Kernel Principal Component Regression (KPCR)
with EM for Kernel PCA (EMKPCA) with the case when the main principal components are
extracted by KPCA. It also seems to be meaningful to investigate how many EM steps we
need, or in other words how fast the EMKPCA algorithm is to get the desired performance
of KPCR. To compare the performance of EMKPCA with the other iterative methods for
estimation of only a few main principal components we also used the eigs Matlab procedure.
This is an implementation of a implicitly restarted Arnoldi method [19, 40] for computing a
few selected eigenvalues of large structured matrices. We refer to this method as iKPCR.

All regression models were trained to predict the value sampled 85 steps ahead from
inputs at time t, t− 6, t− 12, t− 18. The training data partitions were constructed by moving
a ‘sliding window’ over the 3000 training samples in steps of 500 samples. This window had
two sizes - 500 samples and 1000 samples, respectively. This created six partitions of size 500
samples and five partitions of size 1000 samples. We estimated the variance of the overall
clean training set and based on this estimate σ̂2 .

= 0.05 we repeated our simulations for the
width L from the range 〈0.2σ̂2, 20σ̂2〉 using the step size 0.01. A fixed test set of size 500
data points (see Section 6.1) was used in all experiments. The performance of the regression
models to predict ‘clean’ Mackey-Glass time series was evaluated in terms of normalized root
mean squared error (NRMSE). The stopping criterion in the case of EMKPCA was the change
of the Γ matrix in two consecutive EM steps - in reported experiments we used the Frobenius
norm and the threshold equal 1.

The best results on test set averaged over all individual runs are summarized in Table
1. We can not observe any significant difference between the performance of the methods.
With the iKPCR method we did not achieve convergence on all training data pairs on tasks
to compute more than 500 eigenvectors (several different stopping criteria and initializations

were used). We hypothesize that this is due to the low rate between small eigenvalues λi+1

λi
→ 0

of the K matrix .
In Figure 3 we depicted the number of EM steps (in dependence on number of extracted

principal components) for which the number of floating point operations computed by Mat-
lab’s flops function was less than direct diagonalization of the Gram matrix K. Individual
plots represent the dependence for different widths L of the Gaussian kernel used in experi-
ments reported in Table 1. From both graphs we can see that even for relatively small training
data sets (500 (left) and 1000 (right)) using EMKPCA can be advantageous when the number
of desired principal components scales up to 2-3 hundred. With further significantly greater
increases of the number of training data points comparing to the number of desired principal
components, the use of EMKPCA will be even more profitable. However, we have to note,
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that in the case of EMKPCA we did not included the computational costs associated with
finding the corresponding eigenvalues (Appendix A). This is important when the estimate of
the proportion of the variance described by the extracted principal components is needed.
We observed, that adding these extra computations and using 15 EM steps, the EMKPCA
approach will still be profitable when extraction of up to 150 principal components is desired.
Similar to Figure 3, in Figure 4 we depicted the number of EM steps for which the number of
floating point operations was less than using Matlab’s eigs iterative method with default
convergence tolerance 1e−10. Although, theoretically, the complexity of the EMKPCA and
eigs methods is comparable only for the extraction of a lower number of principal compo-
nents we can see that in terms of a number of floating points operations the EMKPCA may
be advantageous also for the extraction of a relatively high number of principal components.
We also observed that with increasing width of the Gaussian kernel the number of principal
components on which eigs converged was decreased. In the case of the Gaussian kernel the
eigenvalues decay more rapidly with increasing width and we may conjecture that this would
be the reason why the convergence for higher number of eigenvalues was not reached.

Method n/s=0.0% n/s=11% n/s=22%
500 1000 500 1000 500 1000

KPCR with 0.038 0.008 0.308 0.281 0.442 0.413

EMKPCA (0.025) (0.004) (0.028) (0.003) (0.033) (0.008)
# of EM steps 5.7 22 10.8 13.4 8.2 11.6

KPCR with 0.038 0.008 0.307 0.280 0.443 0.414

KPCA (0.025) (0.004) (0.030) (0.003) (0.033) (0.010)

KPCR with 0.038 - 0.310 0.280 0.448 0.414

iKPCR (0.025) - (0.033) (0.004) (0.034) (0.010)

Table 1: The comparison of the approximation errors (NRMSE) of prediction for 2 different sizes of
Mackey-Glass training set. The values represent an average of 6 simulations in the case of 500 training
points and 5 simulations in the case of 1000 training points, respectively. iKPCR represents the
method where only the first N eigenvectors were estimated (eigs Matlab procedure). Corresponding
standard deviation is presented in parentheses. The last row of KPCR with the EM approach to
the KPCA method represents the average number of EM steps we used. n/s represents the ratio
between the standard deviation of the added Gaussian noise and the underlying time-series. For KPCR
computed on 500 training points we used the first N = 495, 100 and 50 nonlinear principal components
corresponding to the case of n/s=0.0%, n/s=11% and n/s=22%, respectively. For KPCR computed
on 1000 training points we used the first N = 750, 125 and 75 nonlinear principal components.

In the KPCA algorithm we need to solve the eigenvalue problem (7). However, direct
diagonalization of the Gram K matrix can be numerically unstable when we are dealing with
a matrix of high dimensionality. Moreover, in [23] it was shown that on some data sets the
estimation of the eigenvectors and eigenvalues using only a fraction of training data points
followed by projection of the remaining training data points onto the nonlinear principal com-
ponents does not degrade overall performance. In Table 2, we demonstrate that fact by using
the first half of the training data points (500) to estimate the eigenvectors and eigenvalues of
the (500×500) Gram K matrix. However, it is worth noting that this reduction does not lead
to a significant degradation of the performance on noisy data. The best performance on noisy
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Figure 3: Number of EM steps (in dependence on number of extracted principal components) for
which the number of floating points operations computed by Matlab’s flops function was less than
direct diagonalization of the Gram matrix K. Individual plots represent the dependence for different
widths L of the Gaussian kernel used in experiments reported in Table 1. Left: results using 500
training data points Right: results using 1000 training data points.
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Figure 4: Number of EM steps (in dependence on number of extracted principal components) for
which the number of floating points operations was less than using Matlab’s eigs iterative method with
default convergence tolerance 1e−10. Individual plots represent the dependence for different widths L
of the Gaussian kernel used in experiments reported in Table 1. Left: results using 500 training data
points Right: results using 1000 training data points.
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data was achieved using a significantly smaller number of the principal components which
can be seen as a noise reduction on the feature space data representation [23]. The significant
difference between the prediction accuracy on the clean and on the noisy Mackey-Glass time
series gives rise to the question of whether it is at all possible to sufficiently reduce the level of
the noise in feature space due to the violation of the additive and uncorrelated essence of the
noise introduced by the nonlinear transformation. This may potentially have a stronger effect
on the main principal components [23]. Therefore, we have to deal with the trade off between
noise reduction and the associated signal information loss. From Table 2 we can also see that
the reduction of the number of used eigenvectors to 495 in the case of the clean Mackey-Glass
leads to a significant decrease of the overall performance (NRMSE 0.014) compared to the
results in Table 1 where the best performance was achieved using 750 eigenvectors (NRMSE
0.008).

In next step, we compared KPCR using the EMKPCA algorithm with the KRR method.
The same prediction task, training-testing data pairs and selection of width L parameter as
described above was used. The regularization parameter ξ in KRR was estimated by cross-
validation using 20% of the training data partitions for validation set. In fact, to find the
value of ξ, we did the cross-validation in two steps. First the order of ξ was estimated and
then the finer structure of the values in range ±1 order was taken to estimate a ‘optimal’
value of ξ. Table 3 summarize the achieved results. We compare the behavior of KRR both
with and without additional bias term, whose solution is given by equation (25) and equation
(27), respectively. We can see that assuming an extra, unpenalized bias term we can improve
the performance of KRR on this data set. It is also worth noting that there is no significant
difference between KRR with bias and the KPCR method. However, in [23], for a wide range
of the L parameter we reported smaller variance of KPCR over individual runs for some of the
experimental settings. Moreover, in the case of KPCR we averaged the results on different
training parts using a fixed number of principal components for each run. This is hardly
optimal and we may hypothesize that by using the appropriate model selection criteria for
the selection of the ‘best’ eigenvectors we can further improve the performance of the KPCR
algorithm (see e.g. [10, 22] and references therein).

On this data set we also experimentally compared KRR with a bias term (27) with ‘cen-
tralized’ KRR described at the end of subsection 5.2. Using the same strategy for estimation
of a ξ penalization term by cross-validation we observed the maximum difference between
NRMSE on test set for individual training sets of order 10e−6. Effectively this leads to the
same averaged NRMSE of both methods as displayed for KRR with bias term (27) in Table
3.

Now, let us return to the KPCR model again. We observed that in the case of noisy
Mackey-Glass time series we could significantly reduce the number of principal components
used in KPCR. Moreover, we observed that using a smaller input data set the subspace defined
by these principal components can be sufficiently precisely recovered (evaluated in terms of
the performance of KPCR). In such a case we can highly profit from the computational
and storage advantages of the EM for KPCA algorithm. However, in the case of the clean
Mackey-Glass time series the situation seems to be rather more complicated. Using the 5
different training data sets we observed that on average the best performance of KPCR was
achieved using the 750 main principal components. Observing the feature space eigen-spectra
corresponding to individual mapped training data sets we found that on average 99% of the
variance can be recovered by the first 234±17 principal components. This indicates a rather
fast decay of the eigenvalues. In fact, the first 750 principal components are on average
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Figure 5: Dependence of the training and testing error of KPCR based on the number of principal
components used. Standard errors on test set are presented by dotted lines. Left: the average results
on five 1000 data points training sets. Right: the average results on seven 1500 data points training
sets. The data partitions were constructed by ‘sliding’ over a training set consisting of 3000 data
points using the step 500 (left) and 250 (right), respectively.

covering more then 99.999% of the variance. This effectively means that there also exists
principal components corresponding to the small eigenvalues with not negligible importance
to the final regression model. In Figure 5 (left) we depict the prediction error in terms of
NRMSE in dependence on the number of principal components used. Using 250 principal
components (on average covering more then 99% of the variance) will result with 4.24 times
increased NRMSE on test set comparing the case when 750 principal components were used.
We hypothesize, that there exist a ‘break point’ when another increase of the input data points
will not lead to the increase of the ‘optimal’ number of principal components. However, our
simulation with the training data sets of size 1500 (Figure 5 (right)) indicate that such a
data representation is still not enough (the number of ‘optimal’ principal components was
increased to 1125 with corresponding improvement of the performance - 0.003 NRMSE on
test set). Thus, it remains the topic of the further simulations to find the optimal subspace
of feature space F representing Mackey-Glass time series.
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Method n/s=0.0% n/s=11% n/s=22%

KPCR1000 0.014 0.280 0.414

(0.005) (0.003) (0.010)

KPCR500 0.017 0.282 0.414

(0.009) (0.005) (0.008)

Table 2: The comparison of the approximation errors (NRMSE) of the KPCR method using all 1000
training data points (KPCR1000) to estimate eigenvectors and eigenvalues with the KPCR method
where the first half (500) of the training points was used KPCR500. In the later case, the rest of
the training points was projected onto the estimated eigenvectors. The values represent an average
of 5 simulations. Corresponding standard deviation is presented in parentheses. n/s represents the
ratio between the standard deviation of the added Gaussian noise and the underlying time-series. We
used the first 495, 125 and 75 nonlinear principal components corresponding to the case of n/s=0.0%,
n/s=11% and n/s=22%, respectively.

Method n/s=0.0% n/s=11% n/s=22%
500 1000 500 1000 500 1000

KPCR with 0.038 0.008 0.308 0.281 0.442 0.413

EMKPCA (0.025) (0.004) (0.028) (0.003) (0.033) (0.008)

KRR with bias 0.038 0.007 0.312 0.279 0.446 0.404

eq. (27) (0.024) (0.003) (0.032) (0.010) (0.036) (0.006)

KRR 0.057 0.0102 0.343 0.294 0.468 0.423

eq. (25) (0.039) (0.004) (0.034) (0.011) (0.036) (0.018)

Table 3: The comparison of the approximation errors (NRMSE) of prediction for 2 different sizes of
Mackey-Glass training set. The values represent an average of 6 simulations in the case of 500 training
points and 5 simulations in the case of 1000 training points, respectively. Corresponding standard
deviation is presented in parentheses. n/s represents the ratio between the standard deviation of the
added Gaussian noise and the underlying time-series. For KPCR computed on 500 training points we
used the first 495, 100 and 50 nonlinear principal components corresponding to the case of n/s=0.0%,
n/s=11% and n/s=22%, respectively. For KPCR computed on 1000 training points we used the first
750, 125 and 75 nonlinear principal components.
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7.2 Human Signal Detection Performance Monitoring

On this data set we again investigated the behavior of the KPCR model with the principal
components extracted by the EM approach. On this real world data set we do not have any
information about the type of the noise. It is well known that in the case of the additive
Gaussian noise the best approximation to the regression is given by the quadratic cost func-
tion. However, if the noise is uniform alike the Vapnik ε-insensitive cost function can lead
to more robust estimate [38]. For that reason we also used SVR with the ε-insensitive cost
function whose solution we found by using SVMTorch [2] algorithm.

First, we randomly selected two subjects from all eight subject data set. Based on the
results of our former study we have used the first 90% of the principal components. We
trained the models on 50% of the ERPs and tested on the remaining data. Using 20% of
the training data set as a validation set, we estimated the regularization ξ and ε parameters
for KRR and SVR models. The described results, for each setting of the parameters, are an
average of 10 runs each on a different partition of training and testing data. To be consistent
with the previous results reported in [37] the validity of the models was measured in terms
of normalized mean squared error (NMSE) and in terms of the proportion of data for which
PF1 was correctly predicted with 10% tolerance (test proportion correct (TPC)), i.e ±0.1 in
our case (the PF1 was linearly normalized into the range 〈0, 1〉).

In Figures 6 and 7 we depicted two examples of the dependence of the training and testing
error of the KPCR on the number of EM iterations. We used subject A (592 ERPs) and two
different initializations of the Γ matrix. We run the experiments for a wide range of Gaussian
kernel width parameter L (x-axis). From the upper graphs we can see that using only 5 EM
steps a slight overfitting occurs for the width on which minimum testing error was achieved.
On the second example (lower graphs) the overfitting appears for bigger values of L. However,
this overfitting is in both cases insignificant and from the graphs we can also conjecture that
on average 10 EM steps give good results. Similar results were achieved for subject B (776
ERPs) - Figure 8.

Table 4 summarizes the results achieved on the subjects A and B using KPCR, KRR
with an extra bias term (eq. (27)) and SVR methods. We displayed the results for kernel
width L on which the minimum NMSE on the test set was achieved. This ‘optimal’ width
was different for the individual methods. We can see a slightly worse (appr. 2% on NMSE)
performance of the SVR method comparing to the KPCR and KRR methods which assume
a Gaussian type of noise in the regression model.

In the next experiments we constructed the regression models on all eight subjects. We
split the overall data set (5594 ERPs) into three different training (2765 ERPs) and testing
(2829 ERPs) data pairs. Again, 20% of the training data set was used for cross-validation
in the case of KRR and SVR, respectively. Based on our former studies [21, 23] we used
a Gaussian kernel of width L = 6000. In Figure 9, for one of the training-testing pair, we
depict the training and testing error for a different number of selected eigenvectors. In fact,
we estimated the first 2650 eigenvectors using 30 EM steps and then constructed KPCR
models by removing the eigenvectors corresponding to the smallest eigenvalues. We can
see that using more then 2525 principal components we did not improve the performance.
Moreover comparing the left and right graphs we can see that further increase of the number of
principal components used in KPCR model indicate a possible overfitting effect. On the other
hand, reduction of the number of selected principal components to the first 2000 will lead to
approximately 8.5% degradation of the performance in terms on NMSE. It is interesting to
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Figure 6: Subject A (Γ matrix initialization #1). Dependence of the KPCR performance based on
the number of EM steps used to extract 90% of the non-linear principal components. Individual lines
represents the results achieved for a particular number of EM steps using different width (L) parameter
of the Gaussian kernel.

point out that this choice of 2000 principal components represents only 3.8e−6% reduction of
the described variance compare to the case when 2600 principal components is used.

In Figure 10, for 3 different testing training pairs, we depicted the dependence of the
training and testing error of KPCR on the number of EM steps used for estimation of the
first 2600 principal components. The results suggests that approximately 30 EM steps are
enough to achieve good performance of KPCR on this data set.

Table 5 summarizes the performance of the KPCR with EMKPCA, KRR with a extra
bias term (eq. (27)) and SVR. We can see a slightly better performance achieved with the
KPCR and KRR models in comparison to SVR (appr. 4% on NMSE). Together with results
in Table 4 this suggests that on this data set a Gaussian type of noise is more likely; i.e. the
regression models with quadratic cost function are preferable.

Method NMSE TPC
A B A B

KPCR with EMKPCA 0.1169 0.1746 90.44 84.54

(0.0228) (0.0207) (0.02) (0.02)

KRR with bias eq. (27) 0.1178 0.1750 90.74 84.66

(0.0232) (0.0199) (0.01) (0.01)

SVR with SVMTorch 0.1197 0.1772 90.91 84.28

(0.0241) (0.0211) (0.01) (0.02)

Table 4: The comparison of the NMSE and TPC prediction errors for subjects A and B. The values
represent an average of 10 different simulations and corresponding standard deviation is presented in
parentheses.
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Figure 7: Subject A (Γ matrix initialization #2). Dependence of the KPCR performance based on
the number of EM steps used to extract 90% of the non-linear principal components. Individual lines
represents the results achieved for a particular number of EM steps using different width (L) parameter
of the Gaussian kernel.

4000 5000 6000 7000
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9
x 10

−3

L

NM
SE

4000 5000 6000 7000
0.174

0.175

0.176

0.177

0.178

0.179

0.18

0.181

0.182

L

NM
SE

blue    1  EM step    
green  5  EM steps    
black  10 EM steps    
red     20 EM steps   

blue    1  EM step    
green  5  EM steps    
black  10 EM steps    
red     20 EM steps   

Subject B (776 ERPs) Subject B (776 ERPs) 

Figure 8: Subject B. Dependence of the KPCR performance based on the number of EM steps used
to extract 90% of the non-linear principal components. Individual lines represents the results achieved
for a particular number of EM steps using different width (L) parameter of the Gaussian kernel.
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Figure 9: All subjects. Dependence of the KPCR performance in terms of NMSE based on the
number of used principal components extracted by EM approach to KPCA. 30 EM steps were used.
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Figure 10: All subjects. Dependence of the KPCR performance in terms of NMSE based on the
number of EM steps used to extract 2600 main non-linear principal components. Individual lines
represents the results on different training/testing data pairs.
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Method Train NMSE Test NMSE TPC

KPCR with EMKPCA 0.0025 0.1543 83.28

KRR with bias eq. (27) 0.0039 0.1546 83.50

SVR with SVMTorch 0.0109 0.1611 82.76

Table 5: The comparison of the NMSE and TPC prediction errors for the model based on all subjects
ERPs. The values represent an average of 3 different simulations.

8 Discussion and Conclusions

On two data sets we demonstrated the comparable performance of KPCR with EMKPCA al-
gorithm for kernel principal components extraction in comparison to KRR and SVR. EMKPCA
is computationally more attractive when extraction of p¿ n main principal components is re-
quired. Moreover, the method can be used without storing of the whole (n×n) Gram matrix;
i.e. with memory requirements equal O(p2) +O((p + 1)n). This can be advantageous when
dealing with large data sets. The good performance of KPCR with EMKPCA on both data
sets also suggests that in the case when the number of ‘optimal’ principal components is more
than thousand EMKPCA extracts those principal components sufficiently precisely for desired
KPCR. This is a quite important in the situation where we want to apply any model selection
technique. Due to the fact that, on some data sets, principal components corresponding to
small eigenvalues can have significant correlation with the dependent variable, we would like
to have available the principal components corresponding to the eigenvalues covering almost
the whole variance of the training data. This fact was pointed out in [10, 11] and also stressed
in the Section 5. On the data sets used in our parallel study [22] we observed that using either
CIC or cross-validation model selection techniques, some of the ‘small’ eigenvalues principal
components entered a final model improving the performance.

The connection between KRR and KPCR; i.e. regularized linear regression techniques in
a feature space was given. Using the parallel of those techniques in input space we have shown
how the smaller covariance/variance of the coefficients estimates can be achieved. This is a
quite important fact, because as it was shown in [31] we would like to construct the ‘flattest’
linear regression models in feature space which together with the smoothness properties of the
chosen kernel K would lead to the smooth final non-linear regression estimates. Moreover, on
both data sets we observed that penalization of the bias term in the case of KRR degrades the
performance. We described two possible ways to include an unpenalized bias term into KRR
model and have shown the same improvement of both approaches. The centralization of the
KRR model leads to the computational complexity of O(n3) while the addition of an extra
bias term increases the complexity to O((n + 1)3). On the other hand, the centralization
of KRR model leads to additional computation of the ‘centralized’ training and testing K
matrices (Section 3) and in practical situations we also need to have a representative training
set to correctly estimate centralized testing data.

The ε-insensitive SVR provides a sparse kernel representation. The selection of a reduced
input data set for kernel principal components estimation will lead to a sparse representation
of KPCR. In fact in [21] and also in Section 8 on some data sets we have shown that estimation
of kernel principal components from a partial input data set did not significantly influence the
final performance of KPCR. A possibility to significantly reduce the number of used kernel
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principal components for the next classification tasks was also reported in [27, 26, 17]. This
may potentially lead to a significant reduction of the training set used for the estimation of
the main principal components and effectively allows us to deal with larger data sets. We
conjecture that in the case of the classification this results are more intuitive, as usually the
data structure can be revealed by a few main eigenvectors. This fact was also stressed in [42]
where the lower bound for the selection of the eigenvalues was proposed. On the other hand,
some of the presented results also suggest that in regression tasks one should be more careful
about significant reduction of a number of used principal components based only on criterion
derived from a proportion of variance described by the main principal components.
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Appendix A

We already pointed out that the maximum likelihood estimate QML at convergence will be
of the form (15). Using this theoretical result, relation (8) and the fact that we defined
Q = ΦTΓ we can write

ΦTΓML = VΛ1/2R = ΦT ṼΛ̃−1/2Λ1/2R = ΦT ṼI−1/2
n R,

where In is the diagonal (p × p) matrix with the elements on the diagonal equal to n and
ΓML denotes the matrix Γ corresponding to maximum likelihood estimate QML. Thus, at

convergence, the orthogonality of the ΓML = ṼI
−1/2
n R matrix will be achieved which may be

seen from the fact that

ΓTMLΓML = RT I−1/2
n ṼT ṼI−1/2

n R = I−1
n .

Further, it is easy to see that QT
MLQML = ΓTMLKΓML = RTΛR and we may write the

projection of the training data points

P =
{

(QT
MLQML)

−1QT
MLK

}T
=

{

(RTΛR)−1RT I
−1/2
n ṼTK

}T
=

=
{

RTΛ−1I
−1/2
n ṼTK

}T
=

{

RTΛ−1I
−1/2
n Λ̃ṼT

}T
= ṼI

1/2
n R = ΓMLIn.

Similar for the projection of testing data points we may write

Pt = KtṼI
−1/2
n Λ−1R = KtΓMLΛ

−1R

and it is easy to see that these projections are up to the scaling Λ1/2 and rotationRT identical
to the projections (10) and (11), respectively.

From the definition of our probabilistic PCA model it is clear that the latent variables y
have identity covariance matrix. Thus at convergence the projection of the observed data to
the p-dimensional subspace will lead to the sphering of the projected data.

The diagonalization of the symmetric matrix K2 instead of K leads to the same eigen-
vectors and squared eigenvalues [16, 26]. Further the matrix 1

nK
2 can be seen as the sample

estimate of the covariance matrix of the empirical kernel map Φemp defined for a given set of
points {xi}ni=1 as

Φemp : RN → Rn

x→ K(.,x)|{x1,...,xn} = (K(x1,x), . . . ,K(xn,x)).

This fact was recently also used in [17] where a similar EM algorithm to Kernel PCA was
proposed. It is easy to see that applying the defined Φemp mapping on all data points will
lead to the construction of the Gram matrix K. However, this is now supposed to be a
data matrix with the n observations in rows and n variables in columns. Further note, that
the centralization procedure (13) provides the matrix with zero-mean rows and columns [43].
Thus, we can formulate the eigenvalue problem

1

n
KTKα =

1

n
K2α = λ2α,

where the centralized K matrix is used and α, λ̃ = nλ are also the solutions of (7).
In the next step we can take the orthonormal basis created by orthogonalization of the

columns of Γ and project the observed data to the p-dimensional subspace defined by this
orthonormal matrix Γorth. By applying standard PCA on the covariance matrix of the pro-
jected data Y = KΓorth we can recover the desired squared eigenvalues of the covariance
matrix Ĉ (6).
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Appendix B

First assume the E-step; i.e equation (16) Y = (ΓTKΓ)−1ΓTK. In first step we have to
allocate and compute the (n × p) Γ and (p × p) ΓTKΓ matrices. The computation of the
latter matrix does not require storing of the (n× n) Gram matrix K because the procedure
can be done by the elements of K. In next step we can compute the right hand side (p× n)
ΓTK matrix. However this will increase the memory requirements only by allocating one n
dimensional vector into which we need to temporarily store the results of multiplication of
one particular row of ΓT matrix with the columns of K. It is clear that this procedure can
significantly slow down the algorithm. So, if we have enough memory we can perform the
procedure for a couple of rows of Γ matrix at the same time. Moreover, if we can allocate
additional (n × p) matrix the whole algorithm can be significantly faster as we will need to
compute ΓTK only one time. In the next step we need to compute theY matrix, however this
will not increase the memory requirements because now we can overwrite the ΓTK matrix.
Up till now we assumed we are dealing with a ‘centralized’K matrix. As we noticed in Section
3 the centralization is given by K← K−1nK−K1n+1nK1n where 1n is a (n×n) matrix of
1/n elements. More detailed look will reveal that the individual columns {[1nK]j}ni=j of the

1nK matrix consist of the same numbers 1
n

∑n
i=1 Kij and that the K1n is just the transpose

of 1nK. Similarly we can see that the elements of 1nK1n are 1
n2

∑n
i,j=1 Kij . To speed up the

centralization procedure this n + 1 values can be computed in advanced and stored during
execution of the EM algorithm. To compute the new Γmatrix in M-step Γnew = YT(YYT)−1

we can use the same approach as described for E-step. We can see that again we need to
allocate the (n× p) and (p× p) matrices plus an n-dimensional vector.

Summarizing the both steps we can see that the memory requirements can be reduced to
the O(p2) +O((p+ 1)n), however, as we discussed above, this will be done at the expense of
the speed the algorithm. We conjecture that a good compromise can be achieved by allocating
extra (p× n) space for storing of the ΓTK matrix.
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